Skip to main content
Log in

Simulation of two-dimensional anisotropic cardiac reentry: Effects of the wavelength on the reentry characteristics

  • Research Articles
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A two-dimensional sheet model was used to study the dynamics of reentry around a zone of functional block. The sheet is a set of parallel, continuous, and uniform cables, transversely interconnected by a brick-wall arrangement of fixed resistors. In accord with experimental observations on cardiac tissue, longitudinal propagation is continuous, whereas transverse propagation exhibits discontinuous features. The width and length of the sheet are 1.5 and 5 cm, respectively, and the anisotropy ratio is fixed at approximately 4∶1. The membrane model is a mofified Beeler-Reuter formulation incorporating faster sodium current dynamics. We fixed the basic wavelength and action potential duration of the propagating impulse by dividing the time constants of the secondary inward current by an integerK. Reentry was initiated by a standard cross-shock protocol, and the rotating activity appeared as curling patterns around the point of junction (the q-point) of the activation (A) and recovery (R) fronts. The curling R front always precedes the A front and is separated from it by the excitable gap. In addition, the R front is occasionally shifted abruptly through a merging with a slow-moving triggered secondary recovery front that is dissociated from the A front and q-point. Sustained irregular reentry associated with substantial excitable gap variations was simulated with short wavelengths (K=8 andK=4). Unsustained reentry was obtained with a longer wavelength (K=2), leading to a breakup of the q-point locus and the triggering of new activation fronts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allessie, M. A., F. I. M. Bonke, and F. J. G. Schopman. Circus movement in rabbit atrial muscle and a mechanism of tachycardia. III. The “leading circle” concept: A new model of circus movement in cardiac tissue without the involvement of an anatomical obstacle.Circ. Res. 41:9–18, 1977.

    CAS  PubMed  Google Scholar 

  2. Barkley, D., M. Kness, and S. Tuckerman. Spiral wave dynamics in a simple excitable media: The transition from simple to compound rotation.Phys. Rev. A42:2489–2492, 1990.

    Google Scholar 

  3. Beeler, G. W., and H. Reuter. Reconstruction of the action potential of ventricular myocardial fibers.J. Physiol. 268: 177–210, 1977.

    CAS  PubMed  Google Scholar 

  4. Boersma, L., J. Brugada, C. J. H. Kirchhof, and M. A. Allessie. Entrainment of reentrant ventricular tachycardia in anisotropic rings of rabbit myocardium: Mechanisms of termination, changes in morphology, and acceleration.Circulation 88(1):1852–1865, 1993.

    CAS  PubMed  Google Scholar 

  5. Brugada, J., P. Brugada, L. Boersma, L. Mont, C. J. H. Kirchhof, H. J. Wellens and M. A. Allessie. On the mechanisms of ventricular tachycardia acceleration during programmed electrical stimulation.Circulation 83:1621–1629, 1991.

    CAS  PubMed  Google Scholar 

  6. Brugada, J., L. Boersma, H. Abdollah, C. J. H. Kirchhof, and M. A. Allessie. Echo-wave termination of ventricular tachycardia: A common mechanism of termination of reentrant arrhythmias by various pharmacological interventions.Circulation 85:1879–1887, 1992.

    CAS  PubMed  Google Scholar 

  7. Cardinal, R., M. Vermeulen, M. Shenasa, F. A. Roberge, P. Pagé, F. Hélie, and P. Savard. Anisotropic conduction and functional dissociation of ischemic tissue during reentrant ventricular tachycardia in canine myocardial infarction.Circulation 77:1162–1176, 1988.

    CAS  PubMed  Google Scholar 

  8. Courtemanche, M., and A. T. Winfree. Re-entrant rotating waves in a Beeler-Reuter based model of two-dimensional cardiac electrical activity.Int. J. Bifurc. Chaos 1:431–444, 1991.

    Article  Google Scholar 

  9. Davidenko, J. M., P. F. Kent, D. R. Chialvo, D. C. Michaels, and J. Jalife. Sustained vortex-like waves in normal isolated ventricular muscle.Proc. Natl. Acad. Sci. U.S.A. 87:8785–8789, 1990.

    CAS  PubMed  Google Scholar 

  10. Dillon, S. M., M. A. Allessie, P. C. Ursell, and A. L. Wit. Influences of anisotropic tissue structure on reentrant circuits in the epicardial border zone of subacute canine infarcts.Circ. Res. 63:182–206, 1988.

    CAS  PubMed  Google Scholar 

  11. Drouhard, J. P., and F. A. Roberge. Revised formulation of the Hodgkin-Huxley representation of theNa + current in cardiac cells.Comp. Biomed. Res. 20:333–350, 1987.

    Article  CAS  Google Scholar 

  12. Frazier, D. W., P. D. Wolf, P. D. Wharton, A. S. L. Tang, W. M. Smith, and R. E. Ideker. Stimulus-induced critical point: Mechanism for electrical initiation of reentry in normal canine myocardium.J. Clin. Invest. 83:1039, 1989.

    CAS  PubMed  Google Scholar 

  13. Janse, M. J. Reentry rhythms. In: The Heart and Cardiovascular System, edited by H. A. Fozzard, E. Haber, and R. B. Jennings. New York: Raven Press, 1986, pp. 1203–1238.

    Google Scholar 

  14. Kogan, B. Y., W. J. Karplus, B. S. Billet, A. T. Pang, H. S. Karagueuzian, and S. S. Khan. The simplified FitzHugh-Nagumo model with potential duration restitution: Effects on 2D wave propagation.Physica D 50:327–340, 1991.

    Article  Google Scholar 

  15. Leon, L. J., and F. A. Roberge. Directional loading effects on action potential propagation in cardiac muscle: A model study.Circ. Res. 69:378–395, 1991.

    CAS  PubMed  Google Scholar 

  16. Leon, L. J., and F. A. Roberge. Structural complexity effects on transverse propagation in a two-dimensional model of myocardium.IEEE Trans. Biomed. Eng. 38:997–1009, 1991.

    Article  CAS  PubMed  Google Scholar 

  17. Levine, J. H., E. N. Moore, A. H. Kadish, M. Sterne, W. Balke, and J. F. Spear. Elliptic drag during longitudinal conduction in anisotropic canine myocardium (abstract).Circulation 76(Suppl. IV):IV-431, 1987.

    Google Scholar 

  18. Panfilov, A., and P. Hogeweg. Spiral breakup in a modified FitzHugh-Nagumo model.Physics Lett. A 176:295–299, 1993.

    Article  Google Scholar 

  19. Pertsov, A. M., E. A. Emarkova, and A. V. Panfilov. Rotating spiral waves in modified FitzHugh-Nagumo model.Physica D 14:117–124, 1984.

    Article  Google Scholar 

  20. Pertsov, A., J. M. Davidenko, R. Salomonsz, W. T. Baxter, and J. Jalife. Spiral waves of excitation underlie reentrant activity in isolated cardiac muscle.Circ. Res. 72:631–650, 1993.

    CAS  PubMed  Google Scholar 

  21. Roberge, F. A., and L. J. Leon. Propagation of activation in cardiac muscle.J. Electrocardiol. 25(Suppl.):69–79, 1993.

    Google Scholar 

  22. Roberge, F. A., A. Vinet, and B. Victorri. Reconstruction of propagated electrical activity with a two-dimensional model of anisotropic heart muscle.Circ. Res. 58:461–475, 1986.

    CAS  PubMed  Google Scholar 

  23. Saffitz, J. E., H. L. Kanter, K. G. Green, T. K. Tolley, and E. C. Beyer. Tissue-specific determinants of anisotropic conduction velocity in canine atrial and ventricular myocardium.Circ. Res. 74:1065–1070, 1994.

    CAS  PubMed  Google Scholar 

  24. Schalij, M. J., W. J. E. P. Lammers, P. L. Rensma, and M. A. Allessie. Anisotropic conduction and reentry in perfused epicardium of rabbit left ventricle.Am. J. Physiol. 263:H1466-H1478, 1992.

    CAS  PubMed  Google Scholar 

  25. Smeets, J., M. A. Allessie, W. Lammers, F. I. Bonke, and J. Hollen. The wavelength of the cardiac impulse and reentrant arrythmias in isolated rabbit atrium.Circ. Res. 58:96–108, 1986.

    CAS  PubMed  Google Scholar 

  26. Spach, M. S., W. T. Miller, P. C. Dolber, J. M. Kootsey, J. R. Sommer, and C. E. Mosher. The functional role of structural complexities in the propagation of depolarization in the atrium of the dog.Circ. Res. 50:175–191, 1982.

    CAS  PubMed  Google Scholar 

  27. Spach, M. S., W. T. Miller, D. B. Geselowitz, R. C. Barr, J. M. Kootsey, and E. A. Johnson. The discontinuous nature of propagation in normal canine cardiac muscle—evidence for recurrent discontinuities of intracellular resistance that affects membrane currents.Circ. Res. 48:39–54, 1981.

    CAS  PubMed  Google Scholar 

  28. van Capelle, F. J. L., and D. Durrer. Computer simulation of arrhythmias in a network of coupled excitable elements.Circ. Res. 47:454–466, 1980.

    PubMed  Google Scholar 

  29. Vinet, A., and F. A. Roberge. The dynamics of sustained reentry in a ring model of cardiac tissue.Ann. Biomed. Eng. 22:568–591, 1994.

    CAS  PubMed  Google Scholar 

  30. Vinet, A., and F. A. Roberge. Excitability and repolarization in an ionic model of the cardiac cell membrane.J. Theoret. Biol. 170:183–197, 1994.

    CAS  Google Scholar 

  31. Vinson, M., A. Pertsov, and J. Jalife. Anchoring of vortex filaments in 3D excitable media.Physica D 72:119–134, 1993.

    Google Scholar 

  32. Winfree, A. T. Electrical instability in cardiac muscle: Phase singularities and rotors.J. Theor. Biol. 138:353–405, 1989.

    CAS  PubMed  Google Scholar 

  33. Zykov, V. S. Simulation of Wave Processes in Excitable Media. Manchester, UK: Manchester University Press, 1987, 337 pp.

    Google Scholar 

  34. Zykov, V. S. Kinematics of the non-steady circulation of helical waves in excitable media.Biophysica (English transl.) 32:365–369, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leon, L.J., Roberge, F.A. & Vinet, A. Simulation of two-dimensional anisotropic cardiac reentry: Effects of the wavelength on the reentry characteristics. Ann Biomed Eng 22, 592–609 (1994). https://doi.org/10.1007/BF02368286

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02368286

Keywords

Navigation