Skip to main content
Log in

Rarefaction shock wave in a porous material

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. T. D. Shermergor,Theory of Elasticity of Microinhomogeneous Media [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  2. Z. Khashin, “Elastic moduli of nonhomogeneous materials,” in:Applied Mechanics [Russian translation],29, No. 1 (1962).

  3. J. Eshlby,Continuum Theory of Dislocations [Russian translation], Izd. Inostr. Lit, Moscow (1963).

    Google Scholar 

  4. R. Hill, “Elastic properties of composite media: some theoretical principles,” in:Mechanics [Russian translation] (1964).

  5. A. L. Garson, “Continuum theory of viscous fracture due to pore formation and growth. Part 1. Yield criterion and the laws of flow for a porous plastic medium,”Trans. ASME, J. Basic Eng., No. 1, 1–16 (1975).

    Google Scholar 

  6. V. Tvergard, “Numerical study of localization in a void-sheet,”Int. J. Solids Struct.,25, No. 10, 1143 (1989).

    Google Scholar 

  7. J. N. Jonson and F. L. Adessio, “Tensile plasticity and ductile fracture,”J. Appl. Phys.,64, 6699–6712 (1988).

    ADS  Google Scholar 

  8. M. M. Carrol and A. C. Holt, “Static and dynamic pore collapse relations for ductile porous materials,”J. Appl. Phys.,43, 1626–1635 (1972).

    Google Scholar 

  9. S. P. Kiselev, G. A. Ruev, A. P. Ruev, et al.,Shock-Wave Processes in Two-Component and Two-Phase Media [in Russian], Nauka, Novosibirsk (1992).

    Google Scholar 

  10. S. P. Kiselev and V. M. Fomin, “A model of a porous material with allowance for a plastic zone appearing near the pore,”Prikl. Mekh. Tekh. Fiz.,34, No. 6, 125–133 (1993).

    MathSciNet  Google Scholar 

  11. S. P. Kiselev, “Numerical modeling of propagation of elastoplastic waves in a porous material,” Preprint No. 6-94, Inst. Theor. and Appl. Mech., Sib. Div., Russian Acad. of Sciences (1994).

  12. V. N. Aptukov, P. K. Nikolaev, and V. I. Romanchenko, “Structure of shock waves in porous iron at low pressures,”Prikl. Mekh. Tekh. Fiz., No. 4, 92–98 (1988).

    Google Scholar 

  13. M. L. Wilkins, “Calculation of elastoplastic flows,” in:Computational Methods in Hydrodynamics [Russian translation], Mir, Moscow (1967), pp. 212–263.

    Google Scholar 

  14. S. P. Kiselev, “Dynamic plasticity peak at high-rate failure of metallic shells,”Prikl. Mekh. Tekh. Fiz., No. 2, 122–127 (1991).

    Google Scholar 

  15. Ya. B. Zel'dovich and Yu. P. Raizer,Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  16. L. D. Landau and E. M. Lifshits,Hydrodynamics [in Russian], Nauka, Moscow (1986).

    Google Scholar 

  17. A. G. Ivanov, S. A. Novikov, and Yu. I. Tarasov, “Spalling phenomena in iron and steel due to the interaction of rarefaction shock waves,”Fiz. Tverd. Tela, No. 4, 87 (1962).

    Google Scholar 

  18. S. S. Kutateladze, Al. A. Borisov, A. A. Borisov, and V. E. Nakoryakov, “Experiemntal detection of a rarefaction shock wave near the “liquid-vapor” critical point,”Dokl. Akad. Nauk SSSR,252, No. 3, 595–598 (1980).

    ADS  Google Scholar 

Download references

Authors

Additional information

Institute of Theoretical and Applied Mechanics, Siberian Division, Russian Academy of Sciences, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 37, No. 1, pp. 28–35, January–February, 1996.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiselev, S.P., Fomin, V.M. Rarefaction shock wave in a porous material. J Appl Mech Tech Phys 37, 23–29 (1996). https://doi.org/10.1007/BF02369397

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02369397

Keywords

Navigation