Skip to main content
Log in

Growth, mineral nutrition, organic constituents and rate of photosynthesis inSesbania grandiflora L. grown under saline conditions

  • Published:
Plant and Soil Aims and scope Submit manuscript

Summary

Sesbania showed a luxuriant growth in soil with an electrical conductivity of up to 10 m Scm−1. Under saline conditions Na and Cl accumulated at different rates in the plants. Accumulation of these ions in the leaf rachis compared with leaflets appears to be an adaptive feature of this legume. Maintenance of an optimum K level and accumulation of Ca are also indicative of a salt-tolerance mechanism. Accumulation of Fe in the roots of salt-stressed plants is noteworthy. Organic acids and soluble sugars which accumulated in plants under stress condition may play a role in osmotic adjustment. The level of proline, however, remained unaltered. Though the chlorophyll content of the leaves decreased, the photosynthetic rate was found to be enhanced by saline conditions. The probable relationships between these changes and the salt tolerance mechanism in the plant have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ackerson R C and Youngner V B 1975 Response of Bermuda grass to salinity. Agron. J. 67, 678–681.

    CAS  Google Scholar 

  2. Arnon D I 1949 Copper enzymes in isolated chloroplasts, polyphenol oxidase inBeta vulgaris. Plant Physiol. 24, 1–15.

    CAS  Google Scholar 

  3. Bates L S, Waldren P and Teare I D 1973 Rapid determination of free proline for water stress studies. Plant and Soil 39, 205–207.

    Article  CAS  Google Scholar 

  4. Bernstein L 1956 Salt tolerance of field crops. United States Salinity Laboratory Report to Collaborators, Riverside, California, 33–34.

  5. Bernstein L 1975 Effect of salinity and sodicity on plant growth. Ann Rev. Phytopath. 13, 295–312.

    Article  Google Scholar 

  6. Clarkson D T and Hanson J B 1980 The mineral nutrition of higher plants. Ann. Rev. Plant Physiol. 31, 239–298.

    CAS  Google Scholar 

  7. Dirr M A 1974 Tolerance of honey locust seedlings to soil applied salt. Hort. Sci. 9, 53–54.

    CAS  Google Scholar 

  8. Downton W J S 1977 Chloride accumulation in different species of grapevine. Sci. Hortic. 7, 249–253.

    Article  CAS  Google Scholar 

  9. Drosdoff M and Nearpass G D 1948 Quantitative microdetermination of magnesium in plant tissues and soil extracts. Anal. Chem. 20, 673–674.

    Article  CAS  Google Scholar 

  10. Durie R A, Schaffer H N S and Swaine D J 1965 Technical communication 47, Commonw. Sci. Ind. Res. Org. Techn. Commun. 47, 33–37.

    Google Scholar 

  11. Epstein E 1972 Mineral Nutrition of Plants: Principles and Perspectives. John Wiley and Sons Inc., New York.

    Google Scholar 

  12. Epstein E 1980In Genetic Engineering of Osmoregulation. Impact on Plant Productivity for Food, Chemicals and Energy pp 7–21 Eds. D W Rains, C Valentine and A Hollander. Plenum Press, London.

    Google Scholar 

  13. Flowers T J, Troke P F and Yeo A R 1977 The mechanism of salt to lerance in halophytes. Ann. Rev. Plant Physiol. 28, 89–121.

    CAS  Google Scholar 

  14. Gabriels Jr R 1972 Tolerance aux selo des cultures agricoles et horticoles. Revue de 1. “Agriculture”. 1, 53–72.

    Google Scholar 

  15. Gorham J, McDonnel E and Wyn Jones R G 1984 Pinitol and other solutes in salt stressedSesbania aculeata. Z. Pflanzenphysiol. 114, 173–178.

    CAS  Google Scholar 

  16. Grant D M and Somers G F 1981 Salinity, aeration and the growth ofKosteletzkya virginica. Plant Physiol. (Suppl.) 67, 18.

    Google Scholar 

  17. Hawk P B, Oser B L and Summerson W H 1948In Practical Physiological Chemistry. The Blakiston Company, U.S.A.

    Google Scholar 

  18. Joshi G V 1976 Studies in Photosynthesis under Saline Conditions. PL 480 Project Report, Shivaji University, Kolhapur, India.

    Google Scholar 

  19. Kanwar J S, Bhumbla D R and Singh N T 1965 Studies on the reclamation of saline and sodic soils in Punjab. Indian J. Agric. Sci. 35, 43–51.

    CAS  Google Scholar 

  20. Karadge B A and Chavan P D 1984 Physiological studies in salinity tolerance ofSesbania aculeata Poir. Biol. Plant. 25, 412–418.

    Google Scholar 

  21. Lauchli A and Wieneke J 1979 Studies on the growth and distribution of Na+, K+ and Cl in soybean varieties differing in salt tolerance. Z. Pflanzenernahr. Bodenk. 142, 3–13.

    Google Scholar 

  22. Maas E V and Hoffman G J 1976 Crop salt tolerance: Current Assessment. ASCE. J. Irrig. Drainage. Div. 103, 115–135.

    Google Scholar 

  23. Maas E V, Ogata G and Garber M J 1972 Influence of salinity on Fe, Mn and Zn uptake by plants. Agron. J. 64, 793–795.

    CAS  Google Scholar 

  24. Marschner H, Kylin A and Kuiper P J C 1981 Difference in salt tolerance of three sugar beet genotypes. Physiol. Plant. 51, 234–238.

    CAS  Google Scholar 

  25. Nelson N 1944 A photometric adaptation of the Somogyi method for the determination of sugars. J. Biol. Chem. 153, 375–380.

    CAS  Google Scholar 

  26. Nieman R H 1962 Some effects of sodium chloride on growth, photosynthesis and respiration of twelve crop plants. Bot. Gaz. 123, 279–285.

    Article  CAS  Google Scholar 

  27. Petolino J F and Leone I A 1980 Saline aerosol: Some effects on the physiology ofPhaseolus vulgaris (Cultivar Toporop). Phytopathol. 70, 225–232.

    Google Scholar 

  28. Rush D W and Epstein E 1976 Genotypic responses to salinity. Difference between salt sensitive and salt tolerant genotypes of tomato. Plant Physiol. 57, 162–166.

    CAS  Google Scholar 

  29. Sekine T, Sasakawa T, Morita S, Kimara T and Kuratomi K 1972In Laboratory Manual for Physiological studies of rice. Eds. S. Yoshida, D. Forno, J.N. Cook and K.A. Gomez. Publ. by Inrenational Rice Research Institute, Manila.

    Google Scholar 

  30. Sharadadevi C, Rao G G and Rao G R 198014CO2 incorporation studies under salt stress in safflower (Carthamus tinctorius L.). J. Nuclear. Agric. Biol. 9, 129–132.

    Google Scholar 

  31. Strogonov B P, Kabanov V V, Shevjakova N I, Lapina L P, Komizerko E I, Popov B A, Dostanova R Kh and Prykhod'Ko L S 1970 Structure and Function of Plant Cells under Salinity. Moscow, Nauka.

    Google Scholar 

  32. Svitsev M V, Ponnamoreva S A and Kuznestova E A 1973 Effect of salinization and herbicides on chlorophyllase activity in tomato leaves. Fiziol. Rast. 20, 62–65.

    Google Scholar 

  33. Tal M 1971 Salt tolerance in the wild relatives of the cultivated tomato: Responses ofLycopersicon esculentum, L. peruvianum and L. esculentum minor in NaCl salinity. Aust. J. Agric. Res. 22, 631–638.

    Article  CAS  Google Scholar 

  34. Thomas M and Beevers H 1949 Physiological studies in acid metabolism in gren plants. III. Evidence of CO2 fixation inBryophyllum calycinum and the study of diurnal variation in the genus. New. Phytol. 48, 421–447.

    CAS  Google Scholar 

  35. Tiku B L 1976 Effect of salinity on the photosynthesis of the halophytesSalicornia rubra andDistichlis stricta. Physiol. Plant. 37, 23–28.

    CAS  Google Scholar 

  36. Townsend A M 1980 Response of selected tree species to sodium chlorides. J. Amer. Soc. Hort. Sci. 105, 878–883.

    CAS  Google Scholar 

  37. Volhard A 1956 ChloridesIn Modern methods of plant analysis. K Peach and Tracey M V (ed.), Springer-Verlag Publ. Berlin 1, pp. 487.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chavan, P.D., Karadge, B.A. Growth, mineral nutrition, organic constituents and rate of photosynthesis inSesbania grandiflora L. grown under saline conditions. Plant Soil 93, 395–404 (1986). https://doi.org/10.1007/BF02374290

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02374290

Key words

Navigation