Skip to main content
Log in

Relationship of progressively increasing albuminuria to apoprotein(a) and blood pressure in Type 2 (non-insulin-dependent) and Type 1 (insulin-dependent) diabetic patients

  • Published:
Diabetologia Aims and scope Submit manuscript

Summary

This study has explored the temporal relationship between apoprotein(a), blood pressure and albuminuria over a mean interval of 11 years in a cohort of 107 diabetic patients of whom 26 (14 Type 2 (non-insulin-dependent), 12 Type 1 (insulin-dependent) had progressively increasing albuminuria (‘progressors’). In Type 2 diabetic patients, no significant differences were noted for HbA1, blood pressure, creatinine clearance or serum lipids between progressors and non-progressors. In Type 1 diabetic patients, final systolic and diastolic blood pressures were higher in progressors compared with non-progressors and progressors showed impairment of renal function in association with a rise in blood pressure at the macroalbuminuric stage. Initial apoprotein(a) levels were similar in progressors and non-progressors of either diabetes type. Apoprotein(a) levels increased exponentially with time in 12 of 14 Type 2 progressors but only in 5 of 12 Type 1 progressors (p<0.01). In Type 2 diabetic patients, the annual increase in apoprotein(a) levels was 9.1±2.4%, which was significantly greater than in non-progressors, 2.0±1.2% (p<0.01) and also exceeded the rates of increase of apoprotein(a) in progressors with Type 1 diabetes, 4.0±1.4%, (p<0.05). Apoprotein(a) levels correlated significantly with albuminuria in 8 of 14 Type 2 progressors but only in 3 of 12 Type 1 progressors (p<0.05). The rate of increase of apoprotein(a) levels was not related to mean HbA1, creatinine or creatinine clearance levels, or to albuminuria. The rate of rise of apoprotein(a) was not influenced by initial apoprotein(a) levels, suggesting that specific apoprotein(a) isoforms do not influence albuminuria-related increases in apoprotein(a). The data are consistent with the hypothesis that apoprotein(a) levels increase in response to albuminuria and may be part of a self-perpetuating process. This study also suggests that increases in apoprotein(a) levels commence during the microalbuminuria stage in diabetic patients, which is earlier than has been documented in non-diabetic proteinuria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mogensen CE (1984) Microalbuminuria predicts clinical proteinuria and early mortality in maturity-onset diabetes. N Engl J Med 311:356–360

    Google Scholar 

  2. Jarrett RJ, Viberti GC, Argyropoulos A, Hill RD, Mahmud U, Murrells TJ (1984) Microalbuminuria predicts mortality in non-insulin-dependent diabetes. Diabetic Med 1:17–19

    CAS  PubMed  Google Scholar 

  3. Borch-Johnsen K, Andersen PK, Deckert T (1985) The effect of proteinuria on relative mortality in type 1 (insulin-dependent) diabetes mellitus. Diabetologia 28:590–596

    Article  CAS  PubMed  Google Scholar 

  4. Yudkin JS, Forrest RD, Jackson CA (1988) Microalbuminuria as a predictor of vascular disease in non-diabetic subjects. Lancet II: 530–533

    Google Scholar 

  5. Deckert T, Feldt-Rasmussen B, Borch-Johnsen K, Jensen T, Kofoed-Enevoldsen A (1989) Albuminuria reflects widespread vascular damage. The Steno hypothesis. Diabetologia 32:219–226

    CAS  PubMed  Google Scholar 

  6. Jones SL, Close CF, Marttock MB, Jarrett RJ, Keen H, Viberti GC (1989) Plasma lipid and coagulation factor concentrations in insulin-dependent diabetics with microalbuminuria. BMJ 298: 487–490

    CAS  PubMed  Google Scholar 

  7. Jensen T, Stender S, Deckert T (1988) Abnormalities in plasma concentrations of lipoproteins and fibrinogen in type 1 (insulin-dependent) diabetic patients with increased urinary albumin excretion. Diabetologia 31:142–145

    Article  CAS  PubMed  Google Scholar 

  8. Mogensen CE, Christensen CK (1984) Predicting diabetic nephropathy in insulin-dependent patients. N Engl J Med 311:89–93

    CAS  PubMed  Google Scholar 

  9. Wiseman MJ, Viberti GC, Mackintosh D, Jarrett RJ, Keen H (1984) Glycaemia, arterial pressure and microalbuminuria in type 1 (insulin-dependent) diabetes mellitus. Diabetologia 26: 401–405

    Article  CAS  PubMed  Google Scholar 

  10. Christensen CK, Mogensen CE (1985) The course of incipient diabetic nephropathy. Studies of albumin excretion and blood pressure. Diabetic Med 2:97–102

    CAS  PubMed  Google Scholar 

  11. Jensen T, Bjerre-Knudsen J, Feldt-Rasmussen B, Deckert T (1989) Features of endothelial dysfunction in early diabetic nephropathy. Lancet I:461–463

    Google Scholar 

  12. Stehouwer CDA, Nauta JJP, Zeldenrust GC, Hackeng WHL, Donker AJM, Den Ottolander GJH (1992) Urinary albumin excretion, cardiovascular disease, and endothelial dysfunction in non-insulin-dependent diabetes mellitus. Lancet 340:319–323

    Article  CAS  PubMed  Google Scholar 

  13. Jenkins AJ, Steele JS, Janus ED, Best JD (1991) Increased plasma apolipoprotein(a) levels in IDDM patients with microalbuminuria. Diabetes 40:787–790

    CAS  PubMed  Google Scholar 

  14. Winocour PH, Bhatnagar D, Ishola M, Arrol S, Durrington PN (1991) Lipoprotein(a) and microvascular disease in type I (insulin-dependent) diabetes. Diabetic Med 8:922–927

    CAS  PubMed  Google Scholar 

  15. Kapelrud H, Bangstad H-J, Dahl-Jorgensen K, Berg K, Hanssen KF (1991) Serum Lp(a) lipoprotein concentrations in insulin dependent diabetic patients with microalbuminuria. MBJ 303:675–678

    CAS  Google Scholar 

  16. Schernthaner G, Kostner GM, Dieplinger H (1983) Apolipoproteins(A-I, A-II, B), Lp(a) lipoprotein and lecithin: cholesterol acyltransferase activity in diabetes mellitus. Atherosclerosis 49: 277–293

    Article  CAS  PubMed  Google Scholar 

  17. Jay RH, Jones SL, Hill CE et al. (1991) Blood rheology and cardiovascular risk factors in type I diabetes: relationship with microalbuminuria. Diabetic Med 8:662–667

    CAS  PubMed  Google Scholar 

  18. O'Donnell MJ, Bain SC, Barnett AH, Jones A (1991) Lp(a) concentrations. BMJ 303:1134 (Letter)

    Google Scholar 

  19. Dahlen GH, Guyton JR, Attar M, Farmer JA, Kautz JA, Gotto AM Jr (1986) Association of levels of lipoprotein Lp(a), plasma lipids, and other lipoproteins with coronary artery disease documented by angiography. Circulation 74:758–765

    CAS  PubMed  Google Scholar 

  20. Utermann G (1989) The mysteries of lipoprotein(a). Science 246:904–910

    CAS  PubMed  Google Scholar 

  21. Kusumi Y, Wissler RW (1991) The localization of Lp(a) in the aortas of young people. Proc 9th Intl Symposium on Atherosclerosis. Abstract 230, p75

  22. Utermann G, Menzel HJ, Kraft HG, Duba HC, Kemmler MG, Seitz C (1987) Lp(a) glycoprotein phenotypes: inheritance and relation to Lp(a) concentration in plasma. J Clin Invest 80:458–465

    CAS  PubMed  Google Scholar 

  23. Lackner C, Boerwinkle E, Leffert CC, Rahmig T, Hobbs HH (1991) Molecular basis of apolipoprotein(a) isoform size heterogeneity as revealed by pulsed-field gel electrophoresis. J Clin Invest 87:2153–2161

    CAS  PubMed  Google Scholar 

  24. Jerums G, Cooper M, Seeman E, Murray RML, McNeil JJ (1987) Spectrum of proteinuria in type I and type II diabetes. Diabetes Care 10:419–427

    CAS  PubMed  Google Scholar 

  25. Mogensen CE, Chachati A, Christensen CK et al. (1985–86) Microalbuminuria: an early marker of renal involvement in diabetes. Uremia Invest 9:85–95

    Google Scholar 

  26. Schmidt FH (1961) Enzymatic determination of glucose and fructose simultaneously. Klin Woch 39:1244–1247

    CAS  Google Scholar 

  27. Trovati M, Lorenzati R, Navone GF, Buronzo G, Paand G, Lenti G (1981) Rapid changes of glycosylated haemoglobin in diabetes submitted to artifical pancreas control. J Endocrinol Invest 4: 103–106

    CAS  PubMed  Google Scholar 

  28. Craig WY, Rovlin SE, Forster NR, Nevevx LM, Wald NJ, Ledue TB (1992) Effect of sample storage on the assay of lipoprotein(a) by commercially available radial immuno diffusion and enzyme-linked immuno sorbent assay kits. Clin Chem 38:550–553

    CAS  PubMed  Google Scholar 

  29. Christensen CK, Mogensen CE (1985) Effect of antihypertensive treatment on progression of incipient nephropathy. Hypertension 7 [Suppl II]:109–113

    Google Scholar 

  30. Jerums G, Tsalamandris C, Bach LA et al. (1991) The natural history of diabetic nephropathy. Proc 13th International Diabetes Federation, Washington, 1991

  31. Karadi I, Romics L, Palos G et al. (1989) Lp(a) lipoprotein concentration in serum of patients with heavy proteinuria of different origin. Clin Chem 35:2121–2123

    CAS  PubMed  Google Scholar 

  32. Editorial (1991) Lipoprotein(a). Lancet II: 397–398

  33. Short CD, Durrington PN (1990) Hyperlipidaemia and renal disease. Baillieres Clin Endo Metab 4:777–806

    CAS  Google Scholar 

  34. Parving HH, Noer I, Deckert T et al. (1976) The effect of metabolic regulation on microvascular permeability to small and large molecules in short-term juvenile diabetics. Diabetologia 12:161–166

    Article  CAS  PubMed  Google Scholar 

  35. Williamson J, Chang K, Tilton R et al. (1987) Increased vascular permeability in spontaneously diabetic BB/W rats and in rats with mild versus severe streptozotocin-induced diabetes. Prevention by aldose reductase inhibitors and castration. Diabetes 36:813–857

    CAS  PubMed  Google Scholar 

  36. Jauhiainen M, Koskinen P, Ehnholm C et al. (1991) Lipoprotein(a) and coronary heart disease risk: a nested case-control study of the Helsinki Heart Study participants. Atherosclerosis 89:59–67

    Article  CAS  PubMed  Google Scholar 

  37. Haffner SM, Tuttle KR, Rainwater DL (1991) Decrease of lipoprotein(a) with improved glycemic control in IDDM subjects. Diabetes Care 14:302–307

    CAS  PubMed  Google Scholar 

  38. Levitsky LL, Scanu AM, Gould SH (1991) Lipoprotein(a) levels in black and white children and adolescents with IDDM. Diabetes Care 14:283–287

    CAS  PubMed  Google Scholar 

  39. Ramirez LC, Arauz-Pacheco C, Lackner C, Albright G, Adams BV, Raskin P (1992) Lipoprotein(a) levels in diabetes mellitus: relationship to metabolic control. Ann Int Med 117:42–47

    CAS  PubMed  Google Scholar 

  40. Bruckert E, Davidoff P, Grimaldi A et al. (1990) Increased serum levels of lipoprotein(a) in diabetes mellitus and their reduction with glycemic control. JAMA 263:35–36

    Article  CAS  PubMed  Google Scholar 

  41. Haffner SM, Tuttle KR, Rainwater DL (1992) Lack of change of lipoprotein(a) concentration with improved glycaemic control in patients with type II diabetes. Metabolism 41:116–120

    CAS  PubMed  Google Scholar 

  42. Guillausseau P-J, Peynet J, Chanson P et al. (1992) Lipoprotein(a) in diabetic patients with and without chronic renal failure. Diabetes Care 15:976–979

    CAS  PubMed  Google Scholar 

  43. Black IW, Wilcken DEL (1992) Decreases in apoprotein(a) after renal transplantation: implications for lipoprotein(a) metabolism. Clin Chem 38:353–357

    CAS  PubMed  Google Scholar 

  44. Jerums G, Cooper ME, Seeman E, Murray RML, McNeil J (1988) Comparison of early renal dysfunction in type I and type II diabetes: differing associations with blood pressure and glycaemic control. Diab Res Clin Prac 4:133–141

    CAS  Google Scholar 

  45. Bach LA, Sharpe K (1989) Sample size for clinical and biological research. Aust NZ J Med 19:64–68

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jerums, G., Allen, T.J., Tsalamandris, C. et al. Relationship of progressively increasing albuminuria to apoprotein(a) and blood pressure in Type 2 (non-insulin-dependent) and Type 1 (insulin-dependent) diabetic patients. Diabetologia 36, 1037–1044 (1993). https://doi.org/10.1007/BF02374496

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02374496

Key words

Navigation