Skip to main content
Log in

An intermediate temperature solid oxide fuel cell utilizing superior oxide ion conducting electrolyte, doubly doped LaGaO3 perovskite

  • Published:
Ionics Aims and scope Submit manuscript

Abstract

LaGaO3-based perovskite oxide doped with Sr and Mg exhibits high ionic conduction over a wide oxygen partial pressure. In this study, the stability of the LaGaO3 based oxide was investigated. It became clear that LaGaO3 based oxide is very stable for reduction and oxidation. SOFCs utilizing LaGaO3-based perovskite type oxide for electrolyte were further studied for the decreased temperature solid oxide fuel cells. The power generation characteristics of cells were strongly affected by the electrode, both anode and cathode. It became clear that Ni and LnCoO3 (Ln: rare earth) are suitable for anode and cathode, respectively. Rare earth cations in the Ln-site of Co-based perovskite cathode also have a great effect on the power generation characteristics. In particular, high power density could be attained in the temperature range from 973 to 1273 K by using doped SmCoO3 for the cathode. The electrical conductivity of SmCoO3 increases with increasing Sr amount doped for the Sm site and attained the maximum at Sm0.5Sr0.5CoO3. The cathodic overpotential and the internal cell resistance exhibit almost opposite dependence on the amount of doped Sr. Consequently, the power density of the cell reaches a maximum when Sm0.5Sr0.5CoO3 is used for cathode. On this cell, the maximum power density is as high as 0.58 W/cm2 at 1073 K, although a 0.5 mm thick electrolyte is used. Therefore, this study reveals that the LaGaO3 based oxide for electrolyte and the SmCoO3 based oxide for cathode are promising for solid oxide fuel cells at intermediate temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

5. References

  1. B.C.H. Steele, J. Power Source49, 1 (1994).

    CAS  Google Scholar 

  2. H.L. Tuller and A.W. Nowick, J. Electrochem. Soc.122, 255 (1975).

    CAS  Google Scholar 

  3. M. Godickemeier, K. Sasaki, L.I. Gauckler, and I. Riess, J. Electrochem. Soc.144, 1635 (1997).

    CAS  Google Scholar 

  4. I. Yasuda and M. Hishinuma, Abstract of the 1997 Joint International Meeting (Paris), Vol. 97–2, No. 2141 (1997).

  5. A. Atkinson, Solid State Ionics95, 249 (1997).

    Article  CAS  Google Scholar 

  6. S. de Souza, S.J. Visco, and L.C. de Jonghe, J. Electrochem. Soc.144, L35 (1997).

    Google Scholar 

  7. T. Ishihara, H. Matsuda, and Y. Takita, J. Am. Chem. Soc.116, 3801 (1994).

    CAS  Google Scholar 

  8. T. Ishihara, H. Matsuda, and Y. Takita, Solid State Ionics79, 147 (1995).

    CAS  Google Scholar 

  9. M. Feng and J.B. Goodenough, Eur. J. Solid State Inorg. Chem.31, 663 (1994).

    CAS  Google Scholar 

  10. P.N. Huang and A. Petric, J. Electrochem. Soc.143, 1644 (1996).

    CAS  Google Scholar 

  11. J.W. Stevenson, T.R. Armstrong, D.E. McCready, L.R. Pederson, and W.J. Weber, J. Electrochem. Soc.144, 3613 (1997).

    CAS  Google Scholar 

  12. R.T. Baker, B. Gharbage, and F.M.B. Marques, J. Electrochem. Soc.144, 3130 (1997).

    CAS  Google Scholar 

  13. T. Ishihara, H. Minami, H. Matsuda, H. Nishiguchi, and Y. Takita, J.C.S. Chem. Comm. 929 (1996).

  14. T. Ishihara, T. Kudo, H. Matsuda, and Y. Takita, J. Am. Ceram. Soc.77, 1682 (1994).

    CAS  Google Scholar 

  15. W. Marti, P. Fischer, F. Altorfer, H.J. Scheel and M. Tadin, J. Phys. Condens. Matter6, 127 (1994).

    Article  CAS  Google Scholar 

  16. P.R. Slater, J.T.S. Irvine, T. Ishihara, and Y. Takita, Solid State Ionics, in press.

  17. K.S. Mazzdiyasni, C.T. Lynch, and J.S. Smith, J. Am. Ceram. Soc.50, 532 (1967).

    Google Scholar 

  18. F.K. Moghadam and D.A. Stevenson, J. Am. Ceram. Soc.65, 213 (1982).

    CAS  Google Scholar 

  19. J. Drennan, V. Zelizko, D. Hay, F.T. Ciacchi, S. Rajendran, and S. P.S. Badwal, J. Mater. Chem.7, 79 (1997).

    Article  CAS  Google Scholar 

  20. T. Ishihara, M. Honda, J.A. Kilner, Y. Takita, J. Am. Chem. Soc.119, 2747 (1997).

    Article  CAS  Google Scholar 

  21. K. Yamaji, T. Horita, M. Ishikawa, N. Sakai, H. Yokokawa, and M. Dokiya, in: Solid Oxide Fuel Cells (V.U. Stimming, S.C. Singhal, T. Tagawa, and W. Lehnert, Ed.) PV97–40, The Electrochemical Socierty Proceedings Series, Pennington, NJ (1997) p. 1041.

  22. T. Ishihara, T. Kudo, H. Matsuda, and Y. Takita, J. Electrochem. Soc.142, 1519 (1995).

    CAS  Google Scholar 

  23. T. Ishihara, H. Minami, H. Matsuda, H. Nishiguchi, and Y. Takita, Denki Kagaku64, 642 (1996).

    CAS  Google Scholar 

  24. J.A. Kilner, in: Proc. 2nd Inter. Symp. Ionic and Mixed Conducting Ceramics (T.A.Ramanarayanan, W.L. Worell, and T.L. Tuller, Ed.) PV 94–12, The Electrochemical Socierty Proceedings Series, Pennington, NJ (1994) p.174.

  25. H.Y. Tu, Y. Takeda, N. Imanishi, and O. Yamamoto, Solid State Ionics100, 283 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishihara, T., Honda, M., Shibayama, T. et al. An intermediate temperature solid oxide fuel cell utilizing superior oxide ion conducting electrolyte, doubly doped LaGaO3 perovskite. Ionics 4, 395–402 (1998). https://doi.org/10.1007/BF02375883

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02375883

Keywords

Navigation