Skip to main content
Log in

Oxide ion transport in highly defective cubic stabilized zirconias

  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Ac impedance spectroscopy and neutron powder diffraction have been used to study the high temperature behaviour of defective fluorite solid electrolytes. In yttria-stabilised zirconia with an yttrium content of 15 mol% YO1.5 there is a marked change in conductivity behaviour at around 650 °C, with a decrease in activation energy of 0.15 eV. Structural studies confirm that this is due to a change in the bulk of the sample with the disappearance of diffuse scattering peaks and marked changes in the behaviour of the isotropic temperature factors at the same temperature. These results indicate that the change in activation energy of yttria-stabilised zirconia at 650 °C is due to an order-disorder transition involving local defect clusters. In studies of zirconia co-doped with yttrium and niobium, activation energy for conduction is found to rapidly increase with the concentration of the trivalent yttrium Saturation doping is reached at about 20–30 % of yttrium and activation energy only increases slightly with doping. Introduction of pentavalent niobium at this level of doping serves to decrease activation energy, although it also decreases conductivity slightly. The low and high temperature activation energies converge as the saturation regime is approached. These observations seem to suggest that ordering of defect clusters into microdomains increases activation energy for ionic motion. At low defect concentrations and high temperatures, this local ordering breaks down and the activation energy for conduction decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

5. References

  1. R.I. Smith and S. Hull, Report RAL-94-115, Rutherford Appleton Laboratory 1994.

  2. W.I.F. David, R.M. Ibberson and J.C. Mathewman, Report RAL-92-032, Rutherford Appleton Laboratory 1992.

  3. D.N. Argyriou, J. Appl. Cryst.27, 155–158 (1994).

    Article  CAS  Google Scholar 

  4. V.F. Sears, Neutron News3[3], 26–37 (1992).

    Google Scholar 

  5. S.P.S. Badwal, J. Mat. Sci.20, 4593–4600 (1985).

    Article  Google Scholar 

  6. S.P.S. Badwal, Solid State Ionics52, 23–32 (1992).

    Article  CAS  Google Scholar 

  7. D.K. Honke, Solid State Ionics 5, 531–534 (1981).

    Article  Google Scholar 

  8. J.E. Baurele and J. Hrizo, J. Phys. Chem. Solids30, 565 (1969).

    Article  Google Scholar 

  9. A.S. Nowick and D.S. Park, in: Superionic Conductors, eds. G. Mahan and W. Roth (Plenum Press, New York 1976) 395–412.

    Google Scholar 

  10. A.S. Nowick, D.Y. Wang, D.S. Park and J. Griffith, in: Fast Ion Transport in Solids, eds. P. Vashishta, J.N. Mundy and G.K. Shenoy North Holland, Amsterdam 1979, 673–679

    Google Scholar 

  11. J.A. Kilner and C.D. Waters, Solid State Ionics6, 253–259 (1982).

    Article  CAS  Google Scholar 

  12. J.A. Kilner and B.C.H. Steele, in: Non-stoichiometric Oxides, ed. O.T. Srensen (Academic Press, New York 1981) 233–269.

    Google Scholar 

  13. C.R.A. Catlow, Solid State Ionics12, 67–73 (1984)

    Article  CAS  Google Scholar 

  14. B.C.H. Steele, in: High Conductivity Solid Ionic Conductors, (World Scientific, Singapore 1989) ed. T. Takahashi, 402–446.

    Google Scholar 

  15. C.R.A. Catlow, A.V. Chadwick, C.N. Greaves and L.M. Moroney, J. Am. Ceram. Soc.69[3], 272–277 (1986).

    Article  CAS  Google Scholar 

  16. I.R. Gibson and J.T.S. Irvine, J. Mater. Chem., submitted.

  17. D. Steele and B.E.F. Fender, J. Phys. C. Solid State Phys.7, 1–11 (1974).

    Article  CAS  Google Scholar 

  18. M. Morinaga, J.B. Cohen and J. Faber Jr, Acta Cryst. A35, 789–795 (1979).

    CAS  Google Scholar 

  19. J.B. Cohen, M. Moringa and J. Faber Jr, Solid State Ionics3/4, 61–63 (1981)

    Article  Google Scholar 

  20. R.E. Carter and W.L. Roth, in: Proc. Electromotive Force Measurements in High Temperature Systems, ed. C.B. Alcock (London Institution of Mining and Metallurgy, 1963) 125–144.

  21. H. Horiuchi, A.J. Schultz, P.C.W. Leung and J.M. Williams, Acta Cryst.B40, 367–372 (1984).

    CAS  Google Scholar 

  22. B. Hudson and P.T. Moseley, J. Solid State Chem.19, 383–389 (1976).

    Article  CAS  Google Scholar 

  23. N.H. Anderson, K. Claussen, M.A. Hackett, W. Hayes, M.T. Hutchings, J.E. MacDonald and R. Osborn, in: Proc. 6th Risø Int. Symp. on Metallurgy and Materials Science, eds. F.W. Poulsen et al (London Institution of Mining and Metallurgy, 1985) 279–284.

  24. R. Osborn, N.H. Anderson, K. Claussen, M.A. Hackett, W. Hayes, M.T. Hutchings and J.E. MacDonald, Mater. Sci. Forum7, 55–62 (1985).

    Article  Google Scholar 

  25. S. Hull et al, Solid State Ionics 28–30, 488–492 (1988).

    Google Scholar 

  26. R.B. Neder, F. Frey and H. Schulz, Acta Cryst.A46, 799–809 (1990).

    CAS  Google Scholar 

  27. R.D. Shannon and C.T. Prewitt, Acta Cryst.B25, 925–929 (1969).

    Google Scholar 

  28. J.G. Allpress and H.J. Rossel, J. Solid State Chem.27, 105–114 (1979).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Irvine, J.T.S., Gibson, I.R. & Fagg, D.P. Oxide ion transport in highly defective cubic stabilized zirconias. Ionics 1, 279–285 (1995). https://doi.org/10.1007/BF02390208

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02390208

Keywords

Navigation