Skip to main content
Log in

Disturbance regimes, resilience, and recovery of animal communities and habitats in lotic ecosystems

  • Section 3: The Problem Of Spatial-Temporal Variability
  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

Disturbance regime is a critical organizing feature of stream communities and ecosystems. The position of a given reach in the river basin and the sediment type within that reach are two key determinants of the frequency and intensity of flow-induced disturbances. We distinguish between predictable and unpredictable events and suggest that predictable discharge events are not disturbances.

We relate the dynamics of recovery from disturbance (i.e., resilience) to disturbance regime (i.e., the disturbance history of the site). The most frequently and predictably disturbed sites can be expected to demonstrate the highest resilience.

Spatial scale is an important dimension of community structure, dynamics, and recovery from disturbance. We compare the effects on small patches (⩽1 m2) to the effects of large reaches at the river basin level. At small scales, sediment movements and scour are major factors affecting the distribution of populations of aquatic insects or algae. At larger scales, we must deal with channel formation, bank erosion, and interactions with the riparian zone that will affect all taxa and processes.

Our understanding of stream ecosystem recovery rests on our grasp of the historical, spatial, and temporal background of contemporary disturbance events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Allan, J. D. 1975. The distributional ecology and diversity of benthic insects in Cement Creek, Colorado.Ecology 56:1040–1053.

    Article  Google Scholar 

  • Allen, J. R. L. 1982. Sedimentary structures, their character and physical basis, vols I and II. Developments in sedimentology Nos. 30A,B. Elsevier Scientific Publishing Company: Amsterdam.

    Google Scholar 

  • Andrewartha, H. G., and L. C. Birch. 1954. This distribution and abundance of animals. University of Chicago Press, Chicago.

    Google Scholar 

  • Bagnold, R. A. 1977. Bedload transport by natural rivers.Water Resources Research 13:303–312.

    Google Scholar 

  • Benda, L. E. 1985. Delineation of channels susceptible to debris flows and debris floods. Pages 195–201in International symposium on erosion, debris, flow and disaster prevention, Japan.

  • Blatt, H., G. Middleton, and R. Murray. 1980. Origin of sedimentary rocks. Prentice-Hall, Englewood Cliffs, New Jersey. 782 pp.

    Google Scholar 

  • Brokaw, N. V. 1985. Treefalls, regrowth, and community structure in tropical forests. Pages 53–68in S. T. A. Pickett and P. S. White (eds.), The ecology of natural disturbance and patch dynamics. Academic Press, New York.

    Google Scholar 

  • Bull, W. B. 1979. The threshold of critical power in streams.Geological Society of America Bulletin 90:453–464.

    Article  Google Scholar 

  • Bull, W. B. 1987. Adjustments by the Charwell River, New Zealand, to uplift and climatic changes.Geomorphology 1:15–32.

    Article  Google Scholar 

  • Cairns, J. 1990. Theoretical basis for predicting rate and pathways of recovery.Environmental Management 14:725–736.

    Google Scholar 

  • Carling, P. 1988. The concept of dominant discharge applied to two gravelbed streams in relation to channel stability thresholds.Earth Surfaces and Landforms 13:355–367.

    Google Scholar 

  • Chapman, D. W. 1988. Critical review of variables used to define the effects of fines in redds of large salomonids.Transactions of the American Fisheries Society 117:1–21.

    Article  Google Scholar 

  • Coates, D. R., and Vitek, J. D. (eds.). 1980. Thresholds in geomorphology. George Allen and Unwin, Boston. 498 pp.

    Google Scholar 

  • Cody, M. L., and J. M. Diamond (eds.). 1975. Ecology and evolution of communities. Harvard University Press, Cambridge, Massachusetts.

    Google Scholar 

  • Connell, J. H. 1978. Diversity in tropical rainforests and coral reefs.Science 199:1302–1310.

    Google Scholar 

  • Connell, J. H., and M. J. Keough. 1985. Disturbance and patch dynamics of subtidal marine animals on hard substrata. Pages 125–147in S. T. A. Pickett and P. S. White (eds.), The ecology of natural disturbance and patch dynamics. Academic Press, New York.

    Google Scholar 

  • Culp, J. M., S. J. Walde, and R. W. Davies. 1983. Relative importance of substrate particle size and detritus to stream benthic macroinvertebrate microdistribution.Canadian Journal of Fisheries and Aquatic Sciences 40:1568–1574.

    Google Scholar 

  • Culp, J. M. and R. W. Davies. 1985. Responses of benthic macroinvertebrate species to manipulation of interstitial detritus in Carnation Creek, British Columbia. Canadian Journal of Fisheries and Aquatic Sciences 42:139–146.

    Google Scholar 

  • Dayton, P. K. 1971. Competition, disturbance and community organization: the provision and subsequent utilization of space in a rocky intertidal community. Ecological Monographs 41:351–389.

    Article  Google Scholar 

  • Decamps, H., M. Fortune, F. Gazelle, and G. Panton. 1988. Historical influence of man on the riparian dynamics of a fluvial landscape.Landscape Ecology 1:163–173.

    Article  Google Scholar 

  • Diamond, J. M. 1984. History, disturbance and colonization: effects on lotic macroinvertebrate assemblages. PhD dissertation. University of North Carolina. 197 pp.

  • Dunne, T. and L. B. Leopold. 1978. Water in environmental planning. W. H. Freeman and Company, San Francisco.

    Google Scholar 

  • Fisher, S. 1990. Recovery processes in lotic ecosystems: limits of successional theory.Environmental Management 14:725–736.

    Google Scholar 

  • Fisher, S., L. Gray, M. Grimm, and D. Busch. 1982. Temporal succession in a desert stream following flooding.Ecological Monographs 52:93–110.

    Article  CAS  Google Scholar 

  • Flecker, A. S., and J. D. Allan. 1984. The importance of predation, substrate and spatial refugia in determining lotic insect distributions.Oecologia 64:306–313.

    Article  Google Scholar 

  • Forman, R. T. T., and M. Godron. 1986. Landscape ecology. John Wiley & Sons, New York. 619 pp.

    Google Scholar 

  • Frissel, C. A., W. J. Liss, G. E. Warren, and M. D. Hurley. 1986. A hierarchical framework for stream habitat classification: viewing streams in a watershed context.Environmental Management 10:199–214.

    Article  Google Scholar 

  • Gore, J. A., J. R. Kelly, and J. D. Yount. 1990. Application of ecological theory to determining recovery of disturbed lotic ecosystems: research needs and priorities.Environmental Management. 14:755–762.

    Google Scholar 

  • Graf, W. H. 1971. Hydraulics of sediment transport. McGraw-Hill, New York. 153 pp.

    Google Scholar 

  • Graf, W. L. 1979. The development of montane arroyos and gullies.Earth Surface Proceedings 4:1–14.

    Google Scholar 

  • Gray, L. J., and S. G. Fisher. 1981. Post flood recolonization pathways of macroinvertebrates in a lowland Sonoran desert stream.American Midland Naturalist 106:249–257.

    Article  Google Scholar 

  • Grossman, G. D., P. B. Moyle, and J. O. Whitaker, Jr. 1982. Stochasticity in structural and functional characteristics of an Indiana stream fish assemblage: a test of community theory.American Naturalist 120:423–454.

    Article  Google Scholar 

  • Gurtz, M. E., and J. B. Wallace. 1984. Substrate-mediated response of stream invertebrates to disturbance.Ecology 65:1556–1569.

    Article  Google Scholar 

  • Hansen, A. S., F. diCastri, and P. G. Risser. 1988. A new SCOPE project. Ecotones in a changing environment: The theory and management of landscape boundaries.in F. diCastri and others (eds.). A new look at ecotones: merging international projects on landscape boundaries. Biology International Special Issue 17.

  • Hart, D. D. 1978. Diversity in stream insects: regulation by rock size and microspatial complexity. Verh. Internat. Verein. Limnol. 20:1376–1381.

    Google Scholar 

  • Hart, D. D. 1981. Foraging and resource patchiness: field experiments with a grazing stream insect.Oikos 37:46–52.

    Google Scholar 

  • Hart, D. D. 1983. The importance of competitive interactions within stream populations and communities. Pages 99–138in J. R. Barnes and G. W. Minshall (eds.), Stream ecology: application and testing of general ecological theory. Plenum Press, New York.

    Google Scholar 

  • Hart, D. D. 1985a. Causes and consequences of territoriality in a grazing stream insect.Ecology 66:404–414.

    Article  Google Scholar 

  • Hart, D. D. 1985b. Grazing insects mediate algal interactions in a stream benthic community.Oikos 44:40–46.

    Google Scholar 

  • Hemphill, N., and S. D. Cooper. 1983. The effect of physical disturbance on the relative abundances of two filter feeding insects in a small stream.Oecologia 58:378–382.

    Article  Google Scholar 

  • Hickin, E. J. 1984. Vegetation and river dynamics.Canadian Geographer 28:111–126.

    Article  Google Scholar 

  • Higler, L. W. G. 1975. Reaction of some caddisfly larvae to different types of substrate in an experimental stream.Freshwater Biology 5:151–157.

    Google Scholar 

  • Hupp, C. R. 1982. Stream-grade variation and riparian forest ecology along Passage Creek, Virginia.Bulletin of the Torrey Botanical Club 109:488–499.

    Article  Google Scholar 

  • Huston, M. 1979. A general hypothesis of species diversity.American Naturalist 113:81–101.

    Article  Google Scholar 

  • Karr, J. R., and K. E. Freemark. 1985. Disturbance and vertebrates: an integrative perspective. Pages 153–168in P. S. White and S. T. A. Pickett (eds.), The ecology of natural disturbance and patch dynamics. Academic Press, New York.

    Google Scholar 

  • Koski, K. V. 1975. The survival and fitness of two stocks of chum salmon (Oncorhynchus keta) from egg deposition to emergence in a controlled stream environment at Big Beef Creek. PhD dissertation. University of Washington, Seattle. 212 pp.

    Google Scholar 

  • Linduska, J. P. 1942. Bottom type as a factor influencing the local distribution of mayfly nymphs.Canadian Entomologist 74:26–30.

    Google Scholar 

  • Loucks, O. L., M. L. Plumb-Mentjes, and D. Rogers. 1985. Gap processes and large-scale disturbances in sand prairies. Pages 72–82in P. S. White and S. T. A. Pickett (eds.), The ecology of natural disturbance and patch dynamics. Academic Press, New York.

    Google Scholar 

  • MacArthur, R. H. 1972. Geographical ecology. Harper and Row, New York.

    Google Scholar 

  • MacArthur, R. H., and E. O. Wilson. 1963. An equilibrium theory of insular zoogeography.Evolution 17:373–387.

    Article  Google Scholar 

  • MacArthur, R. H., and E. O. Wilson. 1967. The theory of island biogeography. Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Malmquist, B., and C. Otto. 1987. The influence of substrate stability on the composition of stream benthos: an experimental study.Oikos 48:33–38.

    Google Scholar 

  • McAuliffe, J. R. 1983. Competition, colonization patterns, and disturbances in stream benthic communities. Pages 137–156in J. R. Barnes and G. W. Minshall (eds.), Stream ecology: application and testing of general ecological theory. Plenum Press, New York.

    Google Scholar 

  • McAuliffe, J. R. 1984. Competition for space, disturbance, and the structure of a benthic stream community.Ecology 65:894–908.

    Article  Google Scholar 

  • McIntosh, R. P. 1985. The background of ecology: concept and theory. Cambridge University Press, Cambridge, England.

    Google Scholar 

  • McIntosh, R. P. 1987. Pluralism in ecology.Annual Review of Ecology and Systematics 18:321–341.

    Article  Google Scholar 

  • Middleton, G. V., and J. B. Southard. 1977. Mechanics of sediment movement. SEPM Short Course No. 3. Binghamton, New York.

    Google Scholar 

  • Minshall, G. W. 1984. Aquatic insect-substratum relationships. Pages 358–400in V. H. Resh and D. M. Rosenberg (eds.), The ecology of aquatic insects.

  • Minshall, G. W., and J. N. Minshall. 1977. Microdistribution of benthic invertebrates in a Rocky Mountain (U.S.A.) stream.Hydrobiologia 55:231–249.

    Article  Google Scholar 

  • Minshall, G. W., R. C. Petersen, Jr., and C. F. Nimz. 1985. Species richness in streams of different size from the same drainage basin.American Naturalist 125:16–38.

    Article  Google Scholar 

  • Minshall, G. W., K. W. Cummins, R. C. Petersen, C. E. Cushing, D. A. Bruns, J. R. Sedell, and R. L. Vannote. 1985. Developments in Stream Ecosystem Theory. Canadian Journal of Fisheries and Aquatic Sciences 42:1045–1055.

    Google Scholar 

  • Minshall, G. W., R. C. Petersen, K. W. Cummins, T. L. Bott, J. R. Sedell, C. E. Cushing, and R. L. Vannote. 1983. Interbiome comparison of Stream Ecosystem Dynamics. Ecological Monographs 53:1–25.

    Article  Google Scholar 

  • Moon, H. P. 1939. Aspects of the ecology of aquatic insects.Transactions of the Society of British Entomologists 6:39–49.

    Google Scholar 

  • Naiman, R. J., J. M. Melillo, M. A. Lock, T. E. Ford, and S. R. Reice. 1987. Longitudinal patterns of ecosystem processes and community structure in a subarctic river continuum.Ecology 68:1138–1156.

    Article  Google Scholar 

  • Naiman, R. J., H. Decamps, J. Pastor, and C. A. Johnston. 1988. The potential importance of boundaries to fluvial ecosystems.Journal of the North American Benthological Society 7:289–306.

    Article  Google Scholar 

  • NEPA (National Environmental Policy Act) 1969. Public Law 91-190, 42 U.S.C., 4321–4347.

  • Newbury, R. W. 1984. Hydrologic determinants of aquatic insect habitsts. Pages 323–357in V. H. Resh and D. M. Rosenberg (eds.), The ecology of aquatic insects.

  • Nicholson, A. J. 1954. An outline of the dynamics of animal populations.Australian Journal of Zoology 2:9–65.

    Article  Google Scholar 

  • Nicholson, A. J. 1958. Dynamics of insect populations.Annual Review of Entomology 3:107–136.

    Article  Google Scholar 

  • Peckarsky, B. L. 1983. Biotic interactions or abiotic limitations? A model of lotic community structure. Pages 303–323in T. D. Fontaine and S. M. Bartell (eds.), Dynamics of lotic ecosystems. Ann Arbor Science, Ann Arbor, Michigan.

    Google Scholar 

  • Percival, E., and H. Whitehead. 1929. A quantitative study of some types of stream bed.Journal of Ecology 17:282–314.

    Google Scholar 

  • Perkins, S. J. 1989. Interactions of landslide-supplied sediment with channel morphology in forested watersheds, Lewis County, Washington. Master's thesis. University of Washington, Seattle.

    Google Scholar 

  • Perry, J. A., and D. J. Schaeffer. 1987. The longitudinal distribution of riverine benthos: A river dis-continuum?Hydrobiologia 148:257–268.

    Article  Google Scholar 

  • Pickett, S. T. A., and P. S. White (eds.). 1985. The ecology of natural disturbance and patch dynamics. Academic Press, New York, 472 pp.

    Google Scholar 

  • Pickup, G., and Rieger, W. 1979. A conceptual model of the relationship between channel characteristics and discharge.Earth Surface Proceedings 4:37–42.

    Google Scholar 

  • Pringle, C. M., R. S. Naiman, G. Bretschko, J. Karr, M. Oswood, J. Webster, R. Welcomme, and M. J. Winterbourn. 1988. Patch dynamics in lotic systems: the stream as a mosaic.Journal of the North American Benthological Society 7:503–524.

    Article  Google Scholar 

  • Rabeni, L. F., and G. W. Minshall. 1977. Factors affecting microdistribution of stream benthic insects.Oikos 29:33–43.

    Google Scholar 

  • Reice, S. R. 1977. The role of animal associations and current velocity in sediment-specific leaf litter decomposition.Oikos 29:357–365.

    Google Scholar 

  • Reice, S. R. 1980. The role of substratum in benthic macroinvertebrate microdistribution and litter decomposition in a woodland stream.Ecology 61:580–590.

    Article  Google Scholar 

  • Reice, S. R. 1981. Interspecific associations in a woodland stream.Canadian Journal of Fisheries and Aquatic Sciences 38:1271–1280.

    Google Scholar 

  • Reice, S. R. 1983. Predation and substratum: Factors in lotic community structure. Pages 325–345in S. Bartell and T. Fontaine (eds.), Dynamics of lotic ecosystems. Ann Arbor Science, Ann Arbor, Michigan.

    Google Scholar 

  • Reice, S. R. 1984. The impact of disturbance frequency on the structure of a lotic riffle community.Verhandlungen Internationale Vereinigung Limnologie 22:1906–1910.

    Google Scholar 

  • Reice, S. R. 1985. Experimental disturbance and the maintenance of species diversity in a stream community.Oecologia 67:90–97.

    Article  Google Scholar 

  • Reid, I., and L. E. Frostick. 1984. Particle interaction and its effect on the thresholds of initial and final bedload motion in coarse alluvial channels. Pages 61–68in E. H. Koster and R. J. Steel (eds.), Sedimentology of gravels and conglomerates. Canadian Society of Petroleum Geologists. Memoir 10.

  • Resh, V. H., A. V. Brown, A. P. Covich, M. E. Gurtz, H. W. Li, G. W. Minshall, S. R. Reice, A. L. Sheldon, J. B. Wallace, and R. C. Wissmar. 1988. The role of disturbance in stream ecology.Journal of the North American Benthological Society 7:433–455.

    Article  Google Scholar 

  • Robinson, C. T., and G. W. Minshall. 1986. Effects of disturbance frequency on stream benthic community structure in relation to canopy cover and season.Journal of the North American Benthological Society 5:237–248.

    Article  Google Scholar 

  • Runkle, J. R. 1985. Disturbance regimes in temperate forests. Pages 17–33in S. T. A. Pickett and P. S. White (eds.), The ecology of natural disturbance and patch dynamics. Academic Press, New York.

    Google Scholar 

  • Salo, E., and T. Cundy (eds.). 1987. Streamside management: forestry and fisher interactions. Contribution 57g. College of Forest Resources, University of Washington, Seattle, Washington. 472 pp.

    Google Scholar 

  • Schumm, S. A. 1973. Geomorphic threshold and complex river response of drainage basins. Pages 69–85in M. Morisawa (ed.), Fluvial geomorphology. Publications in geomorphology, vol. 1. SUNY, Binghamton, New York.

    Google Scholar 

  • Schumm, S. A. 1977. The fluvial system. Wiley-Interscience, New York. 338 pp.

    Google Scholar 

  • Schumm, S. A., and Beathard, R. M. 1976. Geomorphic threshold: an approach to river management, in rivers 76, I,1 707–243, Symposium of the waterways. Harbors and Coastal Engineering Division, American Society of Civil Engineers.

  • Shelly, T. E. 1979. The effect of rock size upon the distribution of species of Orthocladiinae andBaetis intercalaris.Ecological Entomology 4:95–100.

    Article  Google Scholar 

  • Shields, A. 1936. In translation by W. P. Oh and J. C. van Uchelen. United States Department of Agriculture, Soil Conservation Service Cooperative Laboratory. California Institute of Technology.

  • Sidle, R. C., A. J. Pearce, and L. C. O'Loughlin. 1985. Hillslope stability and land use. American Geophysical Union. Washington, DC. 140 pp.

    Google Scholar 

  • Sousa, W. P. 1984. The role of disturbance in natural communities.Annual Review of Ecology and Systematics 15:353–392.

    Article  Google Scholar 

  • Sousa, W. P. 1985. Disturbance and patch dynamics on rocky intertidal shores. Pages 101–124in S. T. A. Pickett and P. S. White (eds.), Academic Press, New York.

    Google Scholar 

  • Stanford, J. A., and J. V. Ward. 1983. Insect species diversity as a function of environmental variability and disturbance in stream systems. Pages 265–278in J. R. Barnes and G. W. Minshall (eds.), Stream ecology: application and testing of general ecological theory. Plenum Press, New York.

    Google Scholar 

  • Stazner, B. 1981. The relationship between “hydraulic stress” and microdistribution of benthic macroinvertebrates in lowland running water systems, the Schierenseebrooks (North Germany).Archiv für Hydrobiologie 91:192–218.

    Google Scholar 

  • Statzner, B., and B. Higler. 1986. Stream hydraulics as a major determinant of benthic invertebrate zonation patterns.Freshwater Biology 16:127–138.

    Google Scholar 

  • Stober, Q. J., Narita, R. E. and A. H. Hamalainen. 1978. Instream flow and the reproductive efficiency of sockeye salmon. University of Washington, Fisheries Research Institute. Comp. Report. FRI-UW-7808. 124 pp.

  • Sundborg, A. 1956. The River Klaralven: a study of fluvial processes.Geography Annals 38:127–316.

    Google Scholar 

  • Thorup, J. 1970. The influence of a short-termed flood on a springbrook community.Archiv für Hydrobiologie 66:447–457.

    Google Scholar 

  • Turner, M. G. (ed.). 1987. Landscape heterogeneity and disturbance. Springer-Verlag, New York.

    Google Scholar 

  • Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell and C. E. Cushing. 1980. The river continum concept.Canadian Journal of Fisheries and Aquatic Sciences 37:130–137.

    Article  Google Scholar 

  • Varoni, V. A. 1964. Measurements of critical shear stress for entraining fine sediments in a boundary layer. California Institute Technology, Keck Laboratory, Hydraulics Water Resources, Dept. KH-R-7. 47 pp.

  • Veblen, T. T. 1985. Stand dynamics in ChileanNothofagus forests. Pages 35–51in S. T. A. Pickett and P. S. White (eds.), The ecology of natural disturbance and patch dynamics. Academic Press, New York.

    Google Scholar 

  • Walde, S. J. 1986. Effect of an abiotic disturbance on a lotic predator-prey interaction.Oecologia 69:243–247.

    Article  Google Scholar 

  • Ward, J. V., and J. A. Stanford. 1983. The intermediate disturbance hypothesis: an explanation for biotic diversity patterns in lotic systems. Pages 347–356in S. Bartell and T. Fontaine (eds.), Dynamics of lotic ecosystems. Ann Arbor Science, Ann Arbor, Michigan.

    Google Scholar 

  • Webster, J. R., M. E. Gurtz, J. J. Haines, J. L. Meyer, W. T. Swank, and J. B. Wallace. 1983. Stability of stream ecosystems. Pages 355–395in J. R. Barnes and G. W. Minshall (eds.), Stream ecology: application and testing of general ecological theory. Plenum Press, New York.

    Google Scholar 

  • Wene, G., and E. L. Wickliff. 1946. Modification of a stream bottom and its effect on the insect fauna.Canadian Entomologist 72:131–135.

    Article  Google Scholar 

  • White, P. S., and S. T. A. Pickett. 1985. Natural disturbance and patch dynamics: an introduction. Pages 3–13in S. T. A. Pickett and P. S. White (eds.), The ecology of natural disturbance and patch dynamics. Academic Press, New York.

    Google Scholar 

  • Wise, D. H. and M. C. Molles, Jr. 1979. Colonization of artificial substrates by stream insects: influence of substrate size and diversity.Hydrobiologia 65:69–74.

    Google Scholar 

  • Wolman, M. G., and J. P. Miller. 1960. Magnitude and frequency of forces in geomorphic processes.Journal of Geology 68:54–74.

    Article  Google Scholar 

  • Yount, J. D., and G. Niemi. 1990. Recovery of lotic communities and ecosystems from disturbance—a narrative review of case studies.Environmental Management 14:547–570.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reice, S.R., Wissmar, R.C. & Naiman, R.J. Disturbance regimes, resilience, and recovery of animal communities and habitats in lotic ecosystems. Environmental Management 14, 647–659 (1990). https://doi.org/10.1007/BF02394715

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02394715

Key words

Navigation