Skip to main content
Log in

The recovery creep of niobium-stabilised austenitic stainless steels

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The creep properties of niobium-stabilised stainless steels of carbon contents in the range 0.01 to 0.05% carbon can be accounted for by the general recovery theory of creep. The high stress dependencies of recovery and creep rate can be adequately explained through an internal friction stress or impedance term, retarding recovery. Measurement of this friction term by dislocation density and stress relaxation techniques provides the correct stress dependencies when applied to the modified recovery theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. W. Bailey,J. Inst. Metals 35 (1926) 27.

    Google Scholar 

  2. E. Orowan,J. West Scotland Iron & Steel Inst. 54 (1946–47) 45.

    Google Scholar 

  3. A. H. Cottrell andV. Aytekin,J. Inst. Metals 77 (1950) 389.

    CAS  Google Scholar 

  4. D. Mclean andK. F. Hale, Structural processes in Creep,Iron and Steel Inst. Spec. Report (1961) p. 19.

  5. D. McLean,Reports Progr. Phys. 29 (1966) 1.

    Article  CAS  Google Scholar 

  6. Y. Ishida andD. McLean,J. Iron & Steel Inst. 205 (1967) 88.

    CAS  Google Scholar 

  7. D. McLean,Trans. Met. Soc. AIME 242 (1968) 1193.

    CAS  Google Scholar 

  8. P. W. Davies andK. R. Williams,Acta Metallurgica 17 (1969) 897.

    Article  CAS  Google Scholar 

  9. Idem, J. Inst. Metals 97 (1969) 337.

    CAS  Google Scholar 

  10. W. J. Evans andB. Wilshire,Trans. Met. Soc. AIME 242 (1968) 2514.

    Google Scholar 

  11. T. Watanabe andS. Karashima, Paper presented at Int. Conf. on the Strength of Metals and Alloys, Tokyo, 1967.

  12. D. Sidey andB. Wilshire,Metal Sci. J. 3 (1969) 56.

    CAS  Google Scholar 

  13. J. Friedel, “Dislocations” (Pergamon Press, London, 1964).

    Google Scholar 

  14. M. Hillert,Acta Metallurgica 13 (1965) 227.

    Article  CAS  Google Scholar 

  15. R. Lagneborg,J. Mater. Sci. 3 (1968) 596.

    Article  CAS  Google Scholar 

  16. H. Weidersich,J. Metals 16 (1964) 425.

    Google Scholar 

  17. G. B. Gibbs,Phil. Mag. 13 (1966) 317.

    CAS  Google Scholar 

  18. C. M. Ahlquist andW. D. Nix,Scripta Met. 3 (1969) 679.

    Article  Google Scholar 

  19. P. B. Hirsch, A. Howie, R. B. Nigholson, D. W. Pashley, andM. J. Whelan, “Electron Microscopy of Thin Crystals” (Butterworths, London, 1965) p. 415.

    Google Scholar 

  20. A. F. Rowcliffe,J. Inst. Metals 94 (1966) 263.

    CAS  Google Scholar 

  21. R. Lagneborg,Metal Sci. J. 3 (1969) 18.

    CAS  Google Scholar 

  22. B. Russel, R. K. Ham, J. M. Silcock, andG. Willoughby,ibid 2 (1968) 201.

    Article  Google Scholar 

  23. G. A. Sargeant,Acta Metallurgica 13 (1965) 663.

    Article  Google Scholar 

  24. D. Hull, “Introduction to Dislocations” (Pergamon Press 1965) p. 224.

  25. C. R. Barrett andW. D. Nix,Acta Metallurgica 13 (1965) 1247.

    Article  Google Scholar 

  26. S. K. Mitra andD. McLean,Metal Sci. J. 1 (1967) 192.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, K.R., McLauchlin, I.R. The recovery creep of niobium-stabilised austenitic stainless steels. J Mater Sci 5, 1063–1072 (1970). https://doi.org/10.1007/BF02403279

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02403279

Keywords

Navigation