Skip to main content
Log in

Application of holography to anisotropic composite plates

Holographic stress analysis of homogeneous and heterogeneous anisotropic composite plates subjected to statically and/or dynamically applied loads is presented by the authors

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

The application of holography to stress analysis of opaque, anisotropic composite plates subjected to static or dynamic transverse and in-plane loads is presented. The equations of motion show that, for flexed, anisotropic, laminated composite plates, the complete state of stress at a generic point in any lamina, plus the moments and shear forces, are related to the temporal and spatial partial derivatives of the transverse displacement of the middle surface. Interferometric holography is shown to be well suited for obtaining the transverse displacement. Methods of determining the required spatial and temporal partial derivatives are discussed, an example being demonstrated. The holographic determination of anisotropic-material properties, stress and strain concentrations and the nondestructive evaluation of critical buckling loads for composite structures, plus the use of holographically obtained isopachics to supplement photoelastic analyses of composites, are also discussed. Experimental results for statically and dynamically loaded composite plates and beams with and without geometric discontinuities are presented to illustrate the concepts and techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lekhnitskii, S. G., Anisotropic Plates, Moscow (1956)—English translation by S. W. Tsai and T. Cheron, Gordon and Breach Science Publishers (1968); also, Theory of Elasticity of an Anisotropic Elastic Body—English translation by P. Fern, Holden-Day, Inc. (1963).

  2. Hearmon, R. F. S., An Introduction to Applied Anisotropic Elasticity, Oxford University Press, London (1961).

    Google Scholar 

  3. Ambartsumyan, S. A., Theory of Anisotropic Plates: Strength, Stability and Vibration, Technomic Publishing Co. (1969).

  4. Chen, P. E., “Bending and Buckling of Anisotropic Plates,” Composite Materials Workshop, ed. by S. W. Tsai, J. C. Halpin and N. J. Pagano, Tech. Pub. Co., 217–232 (1968).

  5. Structural Design Guide for Advanced Composite Applications, AFML No. F33615-69-C-1368, prepared by L. A. Division of North American Rockwell Corp., (G. H. Arvin, ed.) (Aug. 1969).

  6. Pih, H. andKnight, C. E., “Photoelastic Analysis of Anisotropic Fiber Reinforced Composites,”Jour. Comp. Matl’s. 3,94–107 (Jan. 1969).

    Google Scholar 

  7. Dally, J. W. andAlfirevich, I., “Application of Birefringent Coating to Glass-fiber-reinforced Plastics,”Experimental Mechanics,9 (3),97–102 (March 1969).

    Article  Google Scholar 

  8. Sampson, R. C., “A Stress-Optic Law for Photoelastic Analysis of Orthotropic Composites,”Experimental Mechanics,10 (5),210–215 (May 1970).

    Article  Google Scholar 

  9. Armenakos, A. E., Garg, S. K., Sciammarella, C. A. andSvalbonas, V., “Experimental Study of the Failure Mechanism and Strength Characteristics of Fiber Bundles and Composites,”Experimental Mechanics,12 (1),1–10 (January 1972).

    Google Scholar 

  10. Theocaris, P. S., Moiré Fringes in Strain Analysis, Pergamon Press (1969).

  11. Powell, R. L. andStetson, K. A., “Interferometric Vibration Analysis by Wave Front Reconstruction,”Jour. Opt. Soc. Amer.,55, (12),1593–1598 (1965).

    Google Scholar 

  12. Monahan, M. A. andBromley, K., “Vibration Analysis by Holographic Interferometry,”Jour. Acoust. Soc. Amer.,44 (5),1225–1231 (1968).

    Google Scholar 

  13. Hovanesian, J. D. and Varner, J., “Methods for Determining the Bending Moments in Normally Loaded Thin Plates by Holographic Interferometry,” Proc. Symp. on Eng. Uses of Holography, Univ. of Strathclyde, Scotland, 173–184 (1968).

  14. Sampson, R. C., “Holographic Interferometry Application in Experimental Mechanics,”Experimental Mechanics,10 (8),313–320 (August 1970).

    Article  Google Scholar 

  15. Aprahamian, R. and Evensen, D. A., “Applications of Holography to High-Frequency Vibrations and Transient Response,” Shock and Vibration Bulletin, 33–44 (December 1969).

  16. Aprahamian, R. andEvensen, D. A., “Application of Holography to Dynamics: High-Frequency Vibrations of Beams,”Jnl. Appl. Mech.,37 (2),287–291 (June 1970).

    Google Scholar 

  17. Wilson, A. D., Lee, C. H., Lominac, H. R. andStrope, D. H., “Holographic and Analytical Study of a Semiclamped Rectangular Plate Suppirted by Struts,”Experimental Mechanics,11 (5),229–234 (May 1971).

    Article  Google Scholar 

  18. Durelli, A. J., Chandraskekhara, K. andParks, V. J., “In-Plane Moiré Strain Analysis of Bent Plates,”Int. Jour. Solids Structures,6,1277–1285 (1970).

    Google Scholar 

  19. Timoshenko, S. and Woinowsky-Krieger, S., Theory of Plates and Shells, McGraw-Hill (1959).

  20. Ashton, J. E. andWaddoups, M. E., “Analysis of Anisotropic Plates,”Jour. Comp. Matl’s 3,148–165 (Jan. 1969).

    Google Scholar 

  21. Lurie, M. andZambuto, M., “A Verification of Holographic Measurement of Vibration,”Jour. Appl. Optics,7 (11),2323–2325 (Nov. 1968).

    Google Scholar 

  22. Gottenberg, W. G., “Some Applications of Holographic Interferometry,”Experimental Mechanics,8 (9),405–410 (1968).

    Article  Google Scholar 

  23. Molin, N. E. andStetson, K. A., “Measuring Combination Mode Vibration Patterns by Holographic Interferometry,”Jnl. Sci. Institute, (J. Phys. E.) Series 2,2,609–612 (1969).

    Google Scholar 

  24. Boone, P. andVerbiest, R., “Application of Hologram Interferometry to Plate Deformation and Translation Measurements,”Optica Acta,16 (5),555–567 (1969).

    Google Scholar 

  25. Stetson, K. A., “Moiré Method for Determining Bending Moments from Hologram Interferometry,”Optics Technology,2,80–84 (1970).

    Google Scholar 

  26. Fourney, M. E.Application of Holography to Photoelasticity,”Experimental Mechanics,8 (1),33–38 (1968).

    Article  Google Scholar 

  27. Hovanesian, J. D., Brcic, V. andPowell, R. L., “A New Experimental Stress-Optic Method, Stress-Holo-Interferometry,”Experimental Mechanics,8 (8),362–368 (1968).

    Article  Google Scholar 

  28. Chau, H. H. M., “Holographic Interferometry for Isopachic Stress Analysis,”Rev. Sci. Inst.,39 (12),1789–1792 (December 1968).

    Google Scholar 

  29. Fourney, M. E. andMate, K. V., “Further Application of Holography to Photoelasticity,”Experimental Mechanics,10 (5),177–186 (May 1970).

    Article  Google Scholar 

  30. Clark, J. A., andDurelli, A. J., “A Simple Holographic Interferometer for Static and Dynamic Photomechanics,”Experimental Mechanics,10 (12),497–505 (December 1970).

    Google Scholar 

  31. Holloway, D. C. andJohnson, R. H., “Advances in Holographic Photoelasticity,”Experimental Mechanics,11 (2),57–63 (February 1971).

    Article  Google Scholar 

  32. Mandell, J. F., “An Experimental Investigation of the Buckling of Anisotropic Fiber Reinforced Plastic Plates,” AFML-TR-68-281, prepared at Case Western Reserve Univ. (Oct. 1968).

  33. Ashton, J. E. andLove, T. S., “Experimental Study of the Stability of Composite Plates,”Jour. Comp. Materials,3,230–242 (April 1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rowlands, R.E., Daniel, I.M. Application of holography to anisotropic composite plates. Experimental Mechanics 12, 75–82 (1972). https://doi.org/10.1007/BF02408442

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02408442

Keywords

Navigation