Skip to main content
Log in

Photoelastic analysis of interlaminar matrix stresses in fibrous composite models

Through the use of scattered-light photoelastic methods, high-matrix stress magnitudes are observed in multilaminar fibrous composite models

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Scattered-light methods are presented for analysis of interlaminar matrix stresses between the fiber layers of composite models. These include data-smoothing techniques and a least-squares solution to utilize the excess information available. Applications are given to determine all stress components in the matrix of a two-layer model and to determine the interlaminar shear stress in the matrix of a four-layer model. The results indicate that matrix stress magnitudes are a function of proximity to the fibers and that they are significantly higher than composite stresses obtained using mathematical models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pipes, R. B., Reed, D. L. and Ashton, J. E., “Experimental Determination of Interlaminar Shear Properties of Composite Materials,” SESA Paper 1985A, presented at SESA Spring Meeting, Cleveland, OH (May 23–26, 1972).

  2. Pipes, R. B. andDalley, J. W., “On the Birefringent-coating Method of Analysis for Fiber-reinforced Laminated Composites,”Experimental Mechanics,12 (6),272–277 (1972).

    Article  Google Scholar 

  3. Dalley, J. W. andAlfrevich, J., “Application of Birefringent Coatings to Glass-fiber-reinforced Plastics,”Experimental Mechanics,9 (3),97–102 (1969).

    Google Scholar 

  4. Daniel, I. M. and Rowlands, R. E., “Experimental Stress Analysis of Composite Materials,” ASME Paper 72-DE-6, presented at ASME Design Engineering Conference, Chicago (May 8–11, 1972).

  5. Rowlands, R. E., Daniel, I. M. andWhiteside, J. B., “Stress and Failure Analysis of a Glass-Epoxy Composite with a Circular Hole,”Experimental Mechanics,13 (1),31–37 (1973).

    Article  Google Scholar 

  6. Daniel, I. M., Rowlands, R. E. andPost, D., “Strain Analysis of Composites by Moiré Methods,”Experimental Mechanics,13 (6),246–252 (1973).

    Article  Google Scholar 

  7. Pipes, R. B. andDaniel, I. M., “Moiré Analysis of the Interlaminar Shear Edge Effect in Laminated Composites,”J. of Composite Materials,5,255–259 (1971).

    Google Scholar 

  8. Tsai, S. W., “Structural Behavior of Composite Materials,” NASA CR-71 (July, 1964).

  9. Armenakas, A. E. andSciammarella, C. A., “Experimental Investigation of the Failure Mechanism of Fiber-reinforced Composites Subjected to Uniaxial Tension,”Experimental Mechanics,13 (2),49–58 (1973).

    Article  Google Scholar 

  10. Pih, H. andKnight, C. E., “Photoelastic Analysis of Anisotropic Fiber Reinforced Composites,”J. of Composite Materials,3,94–107 (1969).

    Google Scholar 

  11. Sampson, R. C., “A Stress-Optic Law for Photoelastic Analysis of Orthotropic Composites,”Experimental Mechanics,10 (5),210–215 (1970).

    Article  Google Scholar 

  12. Dally, J. W. andPrabhakaran, R., “Photo-orthotropic-elasticity,”Experimental Mechanics,11 (8),346–356 (1971).

    Google Scholar 

  13. Tyson, W. R. andDavies, G. J., “A Photoelastic Study of the Shear Stresses Associated with the Transfer of Stress During Fibre Reinforcement,”British J. of Appl. Phys.,16,199–205 (1965).

    Google Scholar 

  14. Schuster, D. M. andScala, E., “The Mechanical Interaction of Sapphire Whiskers with a Birefringent Matrix,”Trans. Metall. Soc. AIME, 230, 1635–1645 (1964).

    Google Scholar 

  15. MacLaughlin, T. F., “Effect of Fiber Geometry on Stress in fiber-reinforced Composite Materials,”Experimental Mechanics,6 (10),481–492 (1966).

    Article  Google Scholar 

  16. MacLaughlin, T. F., “A Photoelastic Analysis of Fiber Discontinuities in Composite Materials,”J. of Comp. Mat.,2,44–55 (1968).

    Google Scholar 

  17. Schuster, D. M. and Scala, E., “Mechanical Interactions in Fiber Reinforced Photoelastic Composites,” Proc. of a Conference on Fundamental Aspects of Fiber Reinforced Plastic Composites, Dayton, OH (May 24–26, 1967).

  18. Pih, H. andSutliff, D. R., “Photoelastic Analyses of Reinforced Composites,”AFML-TR-68-380, Air Force Materials Laboratory, Wright-Patterson Air Force Base, OH (1968).

    Google Scholar 

  19. Marloff, R. H. andDaniel, I. M., “Three-dimensional Photoelastic Analysis of a Fiber-reinforced Model,”Experimental Mechanics,9 (4),156–162 (1969).

    Article  Google Scholar 

  20. Jenkins, D. R., “Analysis of Behavior Near a Cylindrical Glass Inclusion by Scattered-light Photoelasticity,”Experimental Mechanics,8 (10),467–473 (1968).

    Article  Google Scholar 

  21. Rollins, C. T., “Micromechanic Stresses in Photoelastic Composite Coupons,” Paper 2175A presented at 3rd Int. Conf. on Exp. Mech., Los Angeles, CA (May 13–18, 1973).

  22. Sierakowski, R. L., Nevill, G. E., Jr., Ross, C. A. andJones, E. R., “Studies of the Dynamic Fracture Characteristics of Composites,”AFATL-TR-72-44, Air Force Armament Laboratory, Eglin Air Force Base, FL. (March, 1972).

    Google Scholar 

  23. Riley, V. R., “Fibre/Fibre Interaction,”J. of Comp. Mat.,2,436–446 (1968).

    Google Scholar 

  24. Mullin, J., Berry, J. M. andGatti, A., “Some Fundamental Fracture Mechanisms Applicable to Advanced Filament Reinforced Composites,”J. of Comp. Mat.,2,82–103 (1968).

    Google Scholar 

  25. Hussain, M. A., Pu, S. L. andSadowsky, M. A., “On the Detachments of Ends of Microfibers from the Matrix Due to Tension in the Composite,”J. of Comp. Mat.,2,414–427 (1968).

    Google Scholar 

  26. Greszcuk, L. B., “Theoretical and Experimental Studies on Properties and Behavior of Filamentary Composites,” Proc. 21st Annual Tech. Conf., SPI Reinforced Plastic Div., Soc. of the Plastics Ind., Inc., Sec. 8-A (Feb. 1966).

  27. Frocht, M. M. and Srinath, L. A., “A Non-destructive Method for Three-Dimensional Photoelasticity,” Proc. 3rd U.S. Nat. Cong. of Appl. Mech., 329–337 (1958).

  28. Sokolnikoff, I. S., Mathematical Theory of Elasticity, McGraw-Hill Book Company, Inc., New York, 42–44 (1956).

    Google Scholar 

  29. ,40–42.

    Google Scholar 

  30. Frocht, M. M., Photoelasticity,1,John Wiley and Sons, Inc.,New York, NY. Ch. 8 (1941).

    Google Scholar 

  31. Frocht, M. M. and Guernsey, R., “A Special Investigation to Develop a General Method for Three-Dimensional Photoelastic Stress Analysis,” NACA Technical Note 2822 (December 1952).

  32. Berghaus, D. G., “Overdetermined Photoelastic Solutions Using Least Squares,”Experimental Mechanics,13 (3),97–104 (1973).

    Article  Google Scholar 

  33. Srinath, L. S. and Frocht, M. M., “Scattered-Light in Photoelasticity-Basic Equipment and Techniques,” Proc. 4th U.S. Nat. Cong. of Appl. Mech., 775–781 (1972).

  34. McKinney, J. M. and Swinson, W. F., “Location of Maximum Secondary Principal Axis in Scattered-Light Photoelasticity,” Proc. 4th Southeastern Conf. for Theo. and Appl. Mech., Pergamon Press (1970).

  35. Puppo, A. H. andEvenson, H. A., “Interlaminar Shear in Laminated Composites Under Generalized Plane Stress,”J. of Comp. Mat.,4,204–220 (1970).

    Google Scholar 

  36. Pipes, R. B. andPagano, N. J., “Interlaminar Stresses in Composite Laminates Under Uniform Tension,”J. of Comp. Mat.,4,538–548 (1970).

    Google Scholar 

  37. Isakson, G. andLevy, A., “Finite Element Analysis of Shear in Fibrous Composites,”J. of Comp. Mat.,5,273–276 (1971).

    Google Scholar 

  38. Rybiki, E. F., “Approximate Three-Dimensional Solutions for Symmetric Laminates Under In-plane Loading,”J. of Comp. Mat.,5,354–360 (1971).

    Google Scholar 

  39. Berghaus, D. G. andCannon, J. P., “Obtaining Derivatives from Experimental Data Using Smoothed-spline Functions,”Experimental Mechanics,13 (1),38–42 (1973).

    Article  Google Scholar 

  40. Azzi, V. D. andTsai, A. W., “Elastic Moduli of Laminated Anisotropic Composites,”Experimental Mechanics,5 (6),177–185 (1965).

    Article  Google Scholar 

  41. Aderholdt, R. W. and Berghaus, D. G., “Model Design and Fabrication for Stress Analysis in Multilaminar Composites,” to be published in Experimental Mechanics,

  42. Sampson, R. C., “A Three-dimensional Photoelastic Method for Analysis of Differential-contraction Stresses,”Experimental Mechanics,3 (10),225–234 (1963).

    Article  Google Scholar 

  43. Berghaus, D. G., Aderholdt, R. W., Buban, J. J. andWomack, D. R., “Instrumentation Improvements for Scattered-light Photoelasticity,”Experimental Mechanics,14 (12),505–506 (1974).

    Article  Google Scholar 

  44. Berghaus, D. G. and Aderholdt, R. W., “A Scattered-light Photoelastic Analysis of Interlaminar Matrix Stresses in Fibrous Composite Models,” submitted to the National Science Foundation (Grant GK-27791).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berghaus, D.G., Aderholdt, R.W. Photoelastic analysis of interlaminar matrix stresses in fibrous composite models. Experimental Mechanics 15, 409–417 (1975). https://doi.org/10.1007/BF02410338

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02410338

Keywords

Navigation