Skip to main content
Log in

Thermal modeling

The author presents the main considerations in model tests of thermal-stress problems with a review of the major techniques used

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

The causes and the main types of thermal stresses that occur in practice are introduced. Factors of importance in modeling, e.g., Biot number, similarity, and constraints are discussed.

Different experimental techniques used to model thermal-stress problems are reviewed with special attention to the many photoelastic methods that have been used.

A bibliography of some of the main papers in the field is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gaurd, R. W., “Metals at Elevated Temperatures,”Product Engineering,27 (10),160–174 (1956).

    Google Scholar 

  2. Durelli, A. J. andTsao, C. H., “Determination of Thermal Stresses in Three-Ply Laminates,”J. Appl. Mech.,22 (2),190–192 (1955).

    Google Scholar 

  3. Daniel, I. M. andDurelli, A. J., “Photothermoelastic Analysis of Bonded Propellant Grains,”Experimental Mechanics,1 (3),97–104 (1961).

    Article  Google Scholar 

  4. Durelli, A. J. andParks, V. J., “Photoelasticity Methods to Determine Stresses in Propellant-grain Models,”Experimental Mechanics,5 (2),33–46 (1965).

    Article  Google Scholar 

  5. Faupel, J. H., Engineering Design, John Wiley, New York (1964).

    Google Scholar 

  6. McClintock, F. A. andArgon, A. S., Mechanical Behavior of Materials, Addison-Wesley, Reading (1966).

    Google Scholar 

  7. Hult, J. A. H.;Creep in Engineering Structures, Blaisdell, Waltham (1966).

    Google Scholar 

  8. Baron, H. G., “Thermal Shock and Thermal Fatigue,”in Thermal Stress, ed., Benham, P. P. andHoyle, R., Isaac Pitman, London (1964).

    Google Scholar 

  9. Manson, S. S., Thermal Stress in Low Cycle Fatigue, McGraw Hill, New York (1966).

    Google Scholar 

  10. Benham, P. P. andHoyle, R. (Eds.),Thermal Stress, Isaac Pitman, London (1964).

    Google Scholar 

  11. Hovanesian, J. D. andKowalski, H. C., “Similarity in Thermoelasticity,”Experimental Mechanics,7 (2),82–84 (1967).

    Article  Google Scholar 

  12. Burger, C. P., “A Generalized Method for Photoelastic Studies of Transient Thermal Stresses,”Experimental Mechanics,9 (12),529–537 (1969).

    Article  Google Scholar 

  13. Burger, C. P., “Photoelastic Study of Thermal Stress Concentration in a Plate with a Small Change in Thickness,” Developments in Mechanics,5,Proc. 11th Mid-Western Mech. Conf. (1969).

  14. Burger, C. P., “Photothermoelastic Study of Stress Concentrations in a Plate with Internal Heating,”Experimental Mechanics,12 (10),483–488 (1972).

    Article  Google Scholar 

  15. Becker, H., “An Exploratory Study of Stress Concentrations in Thermal Shock Fields,”J. Eng. for Industry (ASME Ser. B), 84, 343–348 (1962).

    Google Scholar 

  16. Gurtman, G. A. andColao, A. A., “PitPhotothermoelastic Investigation of Stresses around a Hole in a Plate Subjected to Thermal Shock,”Experimental Mechanics,5 (4),97–104 (1965).

    Article  Google Scholar 

  17. Burger, C. P., “Photoelastic Modeling of Thermal Stresses Caused by Thermal Shock,” paper presented at 1974 SESA Spring Meeting held in Detroit, MI on May 14–17.

  18. Burger, C. P. and Gryzagoridis, J., Unpublished research at Iowa State University.

  19. Biot, M. A., “Distributed Gravity and Temperature Loading in Two-Dimensional Elasticity Replaced by Boundary Pressures and Dislocation,”J. Appl. Mech., Trans. ASME,2,41–45 (1935).

    Google Scholar 

  20. Weibel, E. E., “Thermal Stresses in Cylinders by the Photoelastic Methods,” Proc. 5th Intl. Cong. Appl. Mech., Cambridge, 213–220 (1938).

  21. Durelli, A. J. andRiley, W. F., Introduction to Photomechanics, Prentice-Hall, Inc., Englewood Cliffs (1965).

    Google Scholar 

  22. Durelli, A. J., Parks, V. J. anddel Rio, C. J., “Stresses, Strains, and Displacements Associated with the Restrained Shrinkage of a Cylinder with Toroidal Cavities,”Recent Advances in Engineering Science,3,521–540 (1968),ed. by C. Eringen.

    Google Scholar 

  23. Durelli, A. J., Parks, V. J., Feng, H. C. andChiang, F., “Strains and Stresses in Matrices with Inserts,”Proc. Int. Conf. Mech. of Comp. Mat., Pergamon Press, Philadelphia (1968).

    Google Scholar 

  24. Parks, V. J., Chiang, Fu-pen andDurelli, A. J., “Maximum Stress at the Angular Corners of Large Strips Bonded on One Side and Shrunk,”Experimental Mechanics,8 (6),278–281 (1968).

    Article  Google Scholar 

  25. Blejwas, T. E., Lauffer, W. D. andTauchert, T. R., “Photothermoelastic Investigation of Stresses in a Composite Model,”Experimental Mechanics,9 (10),478–480 (1969).

    Google Scholar 

  26. Ajovalasit, A., “Photothermoelastic Analysis of Thermal Stresses in Discs with Eccentric Holes,”J. Strain Analysis,5 (3),223–229 (1970).

    Google Scholar 

  27. Kuske, A. and Robertson, G., “Photoelastic Stress Analysis,” Ch. 18, John Wiley (1974).

  28. Fourney, M. E., “A Pseudo Two-dimensional Photoelastic Method of Testing Axisymmetric Geometries,”Experimental Mechanics,11 (1),19–25 (1971).

    Article  Google Scholar 

  29. Slot, T., “Photoelastic Simulation of Thermal stresses by Mechanical Prestraining,”Experimental Mechanics,5 (9),273–282 (1965).

    Article  Google Scholar 

  30. Merend, A. andSlot, T., “Stress Analysis of Thick-walled Tube with Step Change in Thermal Expansion,”Experimental Mechanics,12 (3),136–141 (1972).

    Article  Google Scholar 

  31. Khesin, G. L., Strelchuk, N. A., Shvey, E. M. andSavostyanov, V. N., “Thermoelastic Stress Research by the Method of Unfreezing Free Thermal Strains,”in Experimental Stress Analysis and its Influence on Design, Proc. 4th Intl. Conf. on Exp. Stress Analysis, Cambridge, England, 1970.Published by Inst. of Mech. Engrs., London (1971), ed. byM. L. Meyer.

    Google Scholar 

  32. Asamoah, N. K. andWood, W. G., “Shrinkage Stresses near a Discontinuity in a Fibre Composite Material,”J. Strain Analysis,7 (1),54–60 (1972).

    Google Scholar 

  33. Asamoah, N. K. andWood, W. G., “Thermal Self-Straining of Fibre-reinforced Materials,”J. Strain Analysis,5 (2),88–97 (1970).

    Google Scholar 

  34. Mather, J. andBaines, B. H., “A 3-Dimensional Investigation of Shrink-Fit Stress Distributions,”Strain,6 (3),105–108 (1970).

    Google Scholar 

  35. Holister, G. S., Experimental Stress Analysis—Principles and Methods, Cambridge University Press, London (1967).

    Google Scholar 

  36. Zandman, F., Redner, S. S. andPost, D., “Photoelastic-coating Analysis in Thermal Fields,”Experimental Mechanics,3 (9),215–221 (1963).

    Article  Google Scholar 

  37. Leven, M. M. andJohnson, R. L., “Thermal Stresses on the Surface of Tube-sheet Plates of 10 and 33-1/3 Percent Ligament Efficiency,”Experimental Mechanics,4 (12),356–365 (1964).

    Article  Google Scholar 

  38. Austin, A. L., “Measurement of thermally Induced Stress Waves in a Thin Rod using Birefringent Coatings,”Experimental Mechanics,5 (1),1–10 (1965).

    Article  Google Scholar 

  39. Morozat, B. A., “Experimental Stress Analysis,”Institution of Mechanical Engineering, London, 168–169 (1970).

    Google Scholar 

  40. Gerard, G. andGilbert, A. C., “Photothermoelasticity: An Exploratory Study,”J. Appl. Mech.,24,Trans. ASME,79,355–360 (1957).

    Google Scholar 

  41. Tramposch, H. andGerard, G., “An Exploratory Study of Three Dimensional Photothermoelasticity,”J. Appl. Mech.,28,35–40 (March1961).

    Google Scholar 

  42. Gerard, G., “Progress in Photothermoelasticity,”Intl. Symp. on Photoelasticity, ed. byM. Frocht, Pergamon Press, New York (1963).

    Google Scholar 

  43. Rothstein, R. J. andKirkwood, W. F., “Photothermoelastic Analysis of Stresses in Multiconnected Flat Circular Rings,”Experimental Mechanics,4 (8),237–243 (1964).

    Article  Google Scholar 

  44. Emery, A. F., Barrett, C. F. andKobayashi, A. S., “Temperature Distributions and Thermal Stresses in a Partially Filled Annulus,”Experimental Mechanics,6 (12),602–608 (1966).

    Article  Google Scholar 

  45. Kobayashi, A. S., “Photoelasticity Techniques,” Ch. 6 in Experimental Techniques in Fracture Mechanics, Monograph No. 1, SESA, Iowa State University Press (1973).

  46. McQuillin, L. A., “Experimental Determination of Thermal Stress: A Solid Circular Cylinder in a Transverse Flow of Hot Gas,”J. Strain Analysis,3 (1),1–10 (1968).

    Google Scholar 

  47. Matsumoto, E., Sumi, S. andSekiya, T., “A Photothermoelastic Investigation of Transient Thermal Stresses in Wing Ribs,”J. Strain Analysis,7 (2),117–124 (1972)

    Google Scholar 

  48. Emery, A. F., Williams, J. A. andAvery, J., “Thermal-stress Concentration Caused By Structural Discontinuities,”Experimental Mechanics,9 (12),558–564 (1969).

    Article  Google Scholar 

  49. Becker, H., “An Exploratory Study of Stress Concentrations in Thermal Shock Fields,”J. Eng. for Industry (ASME Ser. B),84,343–348 (1962).

    Google Scholar 

  50. Dally, J. W. andRiley, W. F., Experimental Stress Analysis, McGraw Hill, New York (1965).

    Google Scholar 

  51. Davis, J. B. andSwinson, W. F., “Experimental Investigation of Transient Thermal Stresses in a Solid Sphere,”Experimental Mechanics,8 (9),424–428 (1968).

    Article  Google Scholar 

  52. Braswell, D. W., Ranson, W. F. andSwinson, W. F., “Scattered Light Photoelastic Thermal Stress Analysis of a Solid Propellant Rocket Motor,”J. Spacecraft,5 (12),1411–1416 (1968).

    Google Scholar 

  53. Aderholdt, R. W., Ranson, W. F. andSwinson, W. F., “Scattered-light Photoelastic Stress Analysis of a Solid-propellant Rocket Motor,”Experimental Mechanics,10 (11),481–485 (1970).

    Article  Google Scholar 

  54. Hsu, T. R. andMoyer, R. G., “Application of Holography in High-temperature Displacement Measurements,”Experimental Mechanics,12 (9),431–432 (1972).

    Article  Google Scholar 

  55. Ajovalasit, A., Carollo, S. and Tschinke, M., “Holographic Analysis of Thermal Deformations in a Bi-Metallic Joint,” Proc. 5th Int. Conf. on Exp. Stress. Anal., CSIM, Udine (1974).

  56. Hovanesian, J. D., “New Applications of Holography to Thermoelastic Studies,” Experimental Stress Analysis and Its Influence on Design, ed. by M. L. Meyer, London (1971).

  57. Miyazona, S., “Fixation of Photoelastic Fringe Patterns by Gamma Rays,”J. Appl. Physics,38 (5),2319–2323 (1967).

    Google Scholar 

  58. Gross-Petersen, J. F., “The Gamma-ray-irradiation Method Applied to Three-dimensional Thermal Photoelasticity,”Experimental Mechanics,12 (9),414–419 (1972).

    Article  Google Scholar 

  59. Cloud, G. L. andPindera, J. T., “Techniques in Infra-red Photoelasticity,”Experimental Mechanics,8 (5),193–201 (1968).

    Article  Google Scholar 

  60. Jacob, I. and Schmidt-Tiedermann, K. J., Proc. 3rd Int. Symp. for Exp. Stress Anal., Berlin (1966), V.D.I. Verlag (in German).

  61. Durelli, A. J. andParks, V., Moiré Analysis of Strain, Prentice-Hall, Englewood Cliffs (1970).

    Google Scholar 

  62. Theocaris, P. S., Moiré Fringes in Strain Analysis, Pergamon Press (1969).

  63. Theocaris, P. S., “The Moiré Method in Thermal Fields,”Experimental Mechanics,4 (8),223–231 (1964).

    Article  Google Scholar 

  64. Dantu, P., “Extension of the Moiré Method to Thermal Problems,”Experimental Mechanics,4 (3),64–69 (1964).

    Article  Google Scholar 

  65. Zienkiewitz, O. C. andDundars, J., “Thermal Deformations and Stresses in Viscoelastic Plates,”Proc. Inst. Mech. Engrs., London, 178, Pt 3L, 241–248 (1963-1964).

    Google Scholar 

  66. Cargill, J., “Measuring Strains Under Welds by Moiré Technique,”Strain,6 (1),6–13 (1970).

    Google Scholar 

  67. Sciammarella, C. A. andRoss, B. E., “Thermal Stresses in Cylinders by the Moiré Method,”Experimental Mechanics,4 (10),289–296 (1964).

    Article  Google Scholar 

  68. Sciammarella, C. A. andSturgeon, D., “Thermal Stresses at High Temperatures in Stainless-steel Rings by the Moiré Method,”Experimental Mechanics,6 (5),235–243 (1966);Discussion, Theocaris, P. S.,8 (6), 283–285 (1968).

    Article  Google Scholar 

  69. Johnson, L., “Moiré Techniques for Measuring Strains During Welding,”Experimental Mechanics,14 (4),145–151 (1974).

    Article  Google Scholar 

  70. Straka, P. andPindera, J. T., “Application of Moiré Grids for Deformation Studies in a Wide Temperature Range,”Experimental Mechanics,14 (5),214–216 (1974).

    Article  Google Scholar 

  71. Sciammarella, C. A. andNyuko, H., “Two New Optical Techniques to Measure Strain,”Experimental Mechanics,14 (8),311–316 (1974).

    Article  Google Scholar 

  72. Bush, A. J., “Considerations and Solutions in Evaluating Thermal Stresses in a Composite Cylinder,”Experimental Mechanics,11 (2),87–93 (1971).

    Article  MathSciNet  Google Scholar 

  73. Haines, D. J. andWright, G. P., “An Experimental Method of Determining Thermal Strains,”Experimental Mechanics,9 (7),327–331 (1969).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burger, C.P. Thermal modeling. Experimental Mechanics 15, 430–442 (1975). https://doi.org/10.1007/BF02410343

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02410343

Keywords

Navigation