Skip to main content
Log in

A review of MEMS-based microscale and nanoscale tensile and bending testing

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Thin films at the micrometer and submicrometer scales exhibit mechanical properties that are different than those of bulk polycrystals. Industrial application of these materials requires accurate mechanical characterization. Also, a fundamental understanding of the deformation processes at smaller length scales is required to exploit the size and interface effects to develop new and technologically attractive materials. Specimen fabrication, small-scale force and displacement generation, and high resolution in the measurements are generic challenges in microscale and nanoscale mechanical testing. In this paper, we review small-scale materials testing techniques with special focus on the application of microelectromechanical systems (MEMS). Small size and high force and displacement resolution make MEMS suitable for small-scale mechanical testing. We discuss the development of tensile and bending testing techniques using MEMS, along with the experimental results on nanoscale aluminum specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Neugebauer, C.A., “Tensile Properties of Thin, Evaporated Gold Films,”J. Appl. Phys.,31,1096–1101 (1960).

    Article  Google Scholar 

  2. Gutkin, M.Y., Ovid'ko, I.A., andPande, C.S., “Theoretical Models of Plastic Deformation Processes in Nano-Crystalline Materials,”Rev. Adv. Mater. Sci.,2,80–102 (2001).

    Google Scholar 

  3. Flinn, P.A., Gardner, D.S., andNix, W.D., “Measurement and Interpretation of Stress in Aluminum-Based Metallization as a Function of Thermal History,”IEEE Trans. Electron Devices, (3),689–699 (1987).

    Google Scholar 

  4. Ting, T., Factors Limiting the Accuracy of Mechanical Property Measurement by Nanoindentation, PhD Thesis, Mechanical Engineering and Materials Science, Rice University (1997).

  5. Espinosa, H.D., Prorok, B.C., andFischer, M., “A Methodology for Determining Mechanical Properties of Freestanding Thin Films and MEMS Materials,”Journal of the Mechanics and Physics of Solids,51,47–67 (2002).

    Google Scholar 

  6. Tsuchiya, T., Tabata, O., Sakata, J., andTaga, Y., “Specimen Size Effect on Tensile Strength of Surface Micro-Machined Polycrystalline Silicon Thin Films,”J. Microelectromech. Syst.,7 (1),106–113 (1998).

    Article  Google Scholar 

  7. Ogata, T. andArai, M., “Continuous SEM Observations of Creep-Fatigue Damage Processes,”Fatigue and Fracture of Engineering Materials and Structure,21,873–884 (1998).

    Google Scholar 

  8. Chasiotis, I. andKnauss, W. G., “A New Microtensile Tester for the Study of MEMS Materials with the Aid of Atomic Force Microscopy,” EXPERIMENTAL MECHANICS,42 (1),51–57 (2002).

    Article  Google Scholar 

  9. Behr, R., Mayer, J., andArzt, E., “TEM Investigation of the Superdislocations and Their Interaction with Particles in Dispersion Strengthened Intermetallics,”Intermetallics,7,423–436 (1999).

    Article  Google Scholar 

  10. Robertson, I.M., Lee, T.C., and Birnbaum, H.K., “Application of In Situ TEM Deformation Technique to Observe How ‘Clean’ and Doped Grain Boundaries Respond to Local Stress Concentrations,” Ultramicroscopy,40,330–338.

  11. Youngdahl, C.J., Hugo, R.C., Kung, H., andWeertman, J.R., “TEM Observation of Nano-Crystalline Copper During Deformation,”Materials Research Society Symposium Proceedings,634,B.1.2.1-B.1.2.6 (2001).

    Google Scholar 

  12. Li, J., Zeng, Y., Wang, Y., andChu, W., In SituStudies of Deformation and Fracture in Sputtering Copper Film,”J. Univ. Sci. Technol. Beijing,7 (1),38–41 (2000).

    Google Scholar 

  13. Connally, J.A. andBrown, S.B., “Micromechanical Fatigue Testing.” EXPERIMENTAL MECHANICS,33,81–90 (1993).

    Article  Google Scholar 

  14. Osterberg, P.M. andSenturia, S.D., “M-TEST: A Test Chip for MEMS Material Property Measurement Using Electrostatically Actuated Test Structures,”J. Microelectromech. Syst.,6 (2),107–118 (1997).

    Article  Google Scholar 

  15. Ballarini, R., Mullen, R.L., Yin, Y., Kahn, H., Stemmer, S., andHeuer, A.H., “The Fracture Toughness of Polycrystalline Silicon Microdevices: A First Report,”J. Mater. Res.,12 (4),915–922 (1997).

    Google Scholar 

  16. de Boer, M.P., Jensen, B.D., andBitsie, F., “A Small Area In Situ MEMS Test Structure to Measure Fracture Strength by Electrostatic Probing,”Proc. SPIE,3875,97–103 (1999).

    Google Scholar 

  17. Kazinczi, R., Mollinger, J.R., andBossche, A., “Versatile Tool for Characterising Long-Term Stability and Reliability of Micromechanical Structures,”Proc. SPIE,3875,174–183 (1999).

    Google Scholar 

  18. Van Arsdell, W. andBrown, S.B., “Subcritical Crack Growth in Silicon MEMS,”J. Microelectromech. Syst.,8 (3),319–327 (1999).

    Google Scholar 

  19. Muhlstein, C.L., Brown, S.B., andRitchie, R.O., “High-Cycle Fatigue of Single Crystal Silicon Thin Films,”J. Microelectromech. Syst.,10 (4),593–600 (2001).

    Article  Google Scholar 

  20. Muhlstein, C.L., Brown, S.B., andRitchie, R.O., “High-Cycle Fatigue and Durability of Polycrystalline Silicon Thin Films in Ambient Air,”Sensors and Actuators A,94 (3),177–188 (2001).

    Article  Google Scholar 

  21. Sharpe, W.N. Jr., Jackson, K.M., Hemker, K.J., andXie, Z., “Effect of Specimen Size on Young's Modulus and Fracture Strength of Polysilicon,”J. Microelectromech. Syst.,10 (3),317–326 (2001).

    Article  Google Scholar 

  22. LaVan, D.A. andBuchheit, T.E., “Testing of Critical Features of Polysilicon MEMS,”Proc. SPIE,3880,40–44 (1999).

    Google Scholar 

  23. Greek, S. andEricson, F., “In SituTensile Strength Measurement and Weibull Analysis of Thick-Film and Thin Film Micromachined Polysilicon Structures,”Mater. Res. Soc. Symp. Proc.,518,51–56 (1998).

    Google Scholar 

  24. Lee, H.-J., Cornella, G., andBravman, J.C., “Stress Relaxation of Free-Standing Aluminum Beams for Microelectromechanical Systems Applications,”Appl. Phys. Lett.,76 (23),3415–3417 (2000).

    Article  Google Scholar 

  25. Read, D.T., Cheng, Y.-W., Keller, R.R., andMcColskey, D.J., “Tensile Properties of Free-Standing Aluminum Thin Films,”Scripta Mater.,45 (5),583–589 (2001).

    Google Scholar 

  26. Hoffman, R.W., “Nanomechanics of Thin Films: Emphasis: Tensile Properties,”Mater. Res. Soc. Symp. Proc.,130,295–305 (1989).

    Google Scholar 

  27. Ruud, J.A., Josell, D., andSpaepen, F., “A New Method for Tensile Testing of Thin Films,”J. Mater. Res.,8 (1),112–117 (1993).

    Google Scholar 

  28. Saif, M.T.A. andMacDonald, N.C., “Micro-Instruments for Submicron Material Studies,”J. Mater. Res.,13 (12),3353–3356 (1998).

    Google Scholar 

  29. Haque, M.A. andSaif, M.T.A., “Microscale Materials Testing Using MEMS Actuators,”J. Microelectromech. Syst.,10 (1),146–162 (2001).

    Article  Google Scholar 

  30. Saif, M.T.A. andMacDonald, N.C., “Measurement of Forces and Spring Constants of Micro-Instruments,”Rev. Sci. Instrum.,69 (3),1410–1422 (1998).

    Article  Google Scholar 

  31. Haque, M.A. and Saif, M.T.A., Investigation of Micro-Scale Materials Behavior with MEMS,” Proc. IMECE, Nashville, TN (1999).

  32. Haque, M.A. andSaif, M.T.A., “In SituTensile Testing of Nano-Scale Specimens in SEM and TEM,” EXPERIMENTAL MECHANICS,42 (1),123–128 (2001).

    Google Scholar 

  33. Haque, M.A. andSaif, M.T.A., “Application of MEMS Force Sensors for In SituMechanical Characterization of Nano-Scale Thin Films in SEM and TEM,”Sensors and Actuators A,97–98,239–245 (2002).

    Google Scholar 

  34. Burton, B., “Diffusional Creep of Polycrystalline Materials, 3rd edition, Trans Tech Publications, Germany, 83–84 (1976).

    Google Scholar 

  35. Weihs, T.P., Hong, S., Bravman, J.V., andNix, W.D., “Mechanical Deflection of Cantilever Microbeams: A New Technique for Testing the Mechanical Properties of Thin Films,”J. Mater. Res.,3 (5),931–942 (1988).

    Google Scholar 

  36. Mencik, J. andQuandt, E., “Determination of Elastic Modulus of Thin Films and Small Specimens Using Beam Bending Methods,”J. Mater. Res.,14 (5),2152–2161 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haque, M.A., Saif, M.T.A. A review of MEMS-based microscale and nanoscale tensile and bending testing. Experimental Mechanics 43, 248–255 (2003). https://doi.org/10.1007/BF02410523

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02410523

Key Words

Navigation