Skip to main content
Log in

The role of mechanics in biological and biologically inspired materials

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

In the development of new materials, researchers have recently turned to nature for inspiration and assistance. A special emphasis has been placed on understanding the development of biological materials from the traditional correlation of structure to property, as well as correlating structure to functionality. The natural evolution of structure in biological materials is guided by the interaction between these materials and their environment. What is most notable about natural materials is the way in which the structure is able to adapt at a wide range of length scales. Much of the interaction that biological materials experience occurs through mechanical contact. Therefore, to develop biologically inspired materials it is necessary to quantify the mechanical behavior of and mechanical influences on biological structures with the intention of defining the natural structure-property-functionality relationship for these materials. In particular, the role mechanics has assumed in understanding biological materials, and the biologically inspired materials developed from this knowledge, will be clarified. The following will serve to elucidate on this role: the helical structure of fibrous tissue, the multi-scale structure of wood, and the biologically inspired optimal structure of functionally graded materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amato, I., “Stuff: The Materials The World Is Made Of,”Basic Books, New York (1997).

    Google Scholar 

  2. White, S.R., Sottos, N.R., Geubelle, P.H., Moore, J.S., Kessler, M.R., Sriram, S.R., Brown, E.N., andViswanathan, S., “Autonomic Healing of Polymer Composites,”Nature,409,794–797 (2001).

    Google Scholar 

  3. Dry, C., “Procedures Developed for Self-repair of Polymer Matrix Composite Materials,”Compos. Struct.,35,263–269 (1996).

    Article  Google Scholar 

  4. Goldin, D.S., Venneri, S.L., andNoor, A.K., “The Great Out of the Small,”Mech. Eng.,122,70–79 (2000).

    Google Scholar 

  5. Lakes, R., “Materials with Structural Hierarchy,”Nature,361,511–515 (1993).

    Article  Google Scholar 

  6. Hruska, F., “Radial Forces in Wire Ropes,”Wire and Wire Products,27,459–463 (1952).

    Google Scholar 

  7. Cardou, A., andJolicoeur, C., “Mechanical Models of Helical Strands,”Appl. Mech. Rev.,50,1–14 (1997).

    Google Scholar 

  8. Hearle, J.W.S., Thwaites, J.J., andAmirbayat, J., “Mechanics of Flexible Fiber Assemblies,”NATO Advanced Study Series E: Applied Sciences No 38, Sijthoff and Noordhoff, Groningen (1980).

    Google Scholar 

  9. Rohrich, R.J., andRobinson, J.B., “Wound Healing, Scars, and Envenomation,”Selected Readings in Plastic Surgery,9,1–40 (1999).

    Google Scholar 

  10. Woodhead-Galloway, J., “Collagen—the Universal Body Builder,” New Scientist, 582–584 (1975).

  11. Rich, A., andCrick, F., “Molecular Structure of Collagen,”J. Molecular Biol.,3,483–506 (1961).

    Google Scholar 

  12. Lillie, J., MacCallum, D., Scaletta, L., andOcchino, J., “Collagen Structure: Evidence for a Helical Organization of the Collagen Fibril,”J. Ultrastruct. Res.,58,134–143 (1977).

    Article  Google Scholar 

  13. Rohrich, R.J., andRobinson, J.B., “Wound Healing,”Selected Readings in Plastic Surgery,9,1–40 (1999).

    Google Scholar 

  14. Purslow, P., Wess, T., andHukins, D., “Collagen Orientation and Molecular Spacing During Creep and Stress Relaxation in Soft Connective Tissues,”J. Exp. Biol.,201,135–142 (1998).

    Google Scholar 

  15. Evans, J., Barbenel, J., Steel, T., andAshby, A., “Structure and Mechanics of Tendon,”The Mechanical Properties of Biological Materials, J.F.V. Vincent andJ.D. Currey, eds., 465–469, S.E.B., Leeds (1980).

    Google Scholar 

  16. Nicholls, S.P., Gathercole, L.J., Keller, A., andShah, J.S., “Crimping in Rat Tail Tendon Collagen: Morphology and Transverse Mechanical Anisotropy,”Int. J. Biol. Macromolecules,5,283–288 (1983).

    Google Scholar 

  17. Fung, Y., Biodynamics: Circulation, 404.New York:Springer-Verlag (1984).

    Google Scholar 

  18. Burton, A., “Physiology and Biophysics of the Circulation,”Chicago, IL:Year Book Medical Publishers (1965).

    Google Scholar 

  19. Boresi, A., Sidebottom, O., Seely, F. B., andSmith, J., “Advanced Mechanics of Materials,”New York:John Wiley & Sons (1978).

    Google Scholar 

  20. Fung, Y., andLiu, S., “Change of Residual Stress in Arteries due to Hypertrophy caused by Aortic Constriction,”Circ. Res.,65,1340–1349 (1989).

    Google Scholar 

  21. Parry, D., “The Molecular and Fibrillar Structure of Collagen and Its Relationship to the Mechanical Properties of Connective Tissue,”Biophys. Chem.,29,195–209 (1988).

    Article  Google Scholar 

  22. Burton, A.C., “Relation of Structure to Function of the Tissues of the Walls of Blood Vessels,”Physiol. Rev.,34,61–68 (1954).

    Google Scholar 

  23. Ayer, J.P., “Elastin Tissue,”International Review of Connective Tissue Research, D. A. Hall ed.,2,33.New York:Academic Press (1964).

    Google Scholar 

  24. Manning, W.R., andLabrow, S., High Pressure Engineering.London:Leonard Hill (1974).

    Google Scholar 

  25. Kaplan, D., Adams, W., Farmer, B., and Viney, C., “Silk: Biology, Structure, Properties and Genetics,” Silk Polymers, D. Kaplan et al. eds., 2–16 (1994).

  26. Arcidiacono, S, Anthoula, L., Huang, Y., Zhou, J., Duguay, F., Chretien, N., Welsh, E., Soares, J., andKaratzas, C., “Spider Silk Fibers Spun from Soluble Recombinant Silk Produced in Mammalian Cells,”Science,295,472–476 (2002).

    Google Scholar 

  27. Madsen, B., Shao, Z., andVollrath, F., “Variability in the Mechanical Properties of Spider Silks on Three Levels: Interspecific, Intraspecific and Intraindividual,”Int. J. Biol. Macromolecules,24,301–306 (1999).

    Google Scholar 

  28. Gosline, J., Guerette, P., Ortlepp, C., andSavage, K., “The Mechanical Design of Spider's Silks: from Fibroin Sequence to Mechanical Function,”J. Exp. Biol.,202,3295–3303 (1999).

    Google Scholar 

  29. Vollrath, F. andKnight, D. P., “Liquid Crystalline Spinning of Spider Silk,”Nature,410,541–548 (2001).

    Article  Google Scholar 

  30. Kaplan, D., Adams, W., Farmer, B., and Viney, C., “Silk Polymers: Material Science and Biopolymers,” 370,Americam Chemical Society (1993).

  31. Vollrath, F., Holtet, T., Thogersen, H., and Frische, S., “Structural Organization of Spiders Silk,” Proc. R. Soc., B, 147–151 (1996).

  32. Wilson, K., andWhite, D.B.J., “The Anatomy of Wood,”London:Stobart and Sons (1986).

    Google Scholar 

  33. Bucur, V., “Acoustics of Wood,”Boca Raton, FL:CRC Press (1995).

    Google Scholar 

  34. US Department of Agriculture, “Wood Handbook,”Gen. Tech. Report. FPL-GTR-113, Forest Products Laboratory, Madison WI (1999).

    Google Scholar 

  35. Coutts, N.M.P., andGrace, J., “Wind and Trees,”Cambridge:Cambridge University Press (1995).

    Google Scholar 

  36. Ashby, M.Material Selection in Mechanical Design,”418,Oxford:Butterworth-Heinemann (1999).

    Google Scholar 

  37. Granta Design Limited, Cambridge Engineering Selector, Cambridge, UK (1999).

  38. Harris, J.M., “Spiral Grain and Wave Phenomena in Wood Formation,”Berlin:Springer-Verlag (1989).

    Google Scholar 

  39. American Society for Testing and Materials, “Standard Methods of Static Tests of Timbers in Structural Sizes,” ASTM D198-84, Philadelphia PA (1984).

  40. Baer, E., Hiltner, A., andMorgan, R., “Biological and Synthetic Hierarchical Composites,”Phys. Today,45,60–67 (1992).

    Google Scholar 

  41. Bodig, J., andJayne, B. A., Mechanics of Wood and Wood Composites, Malabar, FL:Kneger Publishing (1993).

    Google Scholar 

  42. Suresh, S., andMortenson, A., Fundamentals of Functionally Graded Materials, Institute of Materials, London (1998).

    Google Scholar 

  43. Markworth, A.J., Ramesh, K.S., andParks, W.P. Jr., “Review: Modelling Studies Applied to Functionally Graded Materials,”J. Mater. Sci.,30,2183–2193 (1995).

    Article  Google Scholar 

  44. Amada, S., Ichikawa, Y., Munekata, T., Nagese, Y., andShimizu, H., “Fiber Texture and Mechanical Graded Structure of Bamboo,”Composites B, 28B, 13–20 (1997).

    Google Scholar 

  45. Kreuz, P., Arnold, W., andKesel, A.B., “Acoustic Microscopic Analysis of the Biological Structure of Insect Wing Membranes with Emphasis on their Waxy Surface,”Ann. Biomed. Eng.,29,1054–1058 (2001).

    Article  Google Scholar 

  46. Niino, M., andMaeda, S., “Recent Development Status of Functionally Gradient Materials,”ISIJ Int.,30,699–703 (1990).

    Google Scholar 

  47. Bendsoe, P.M., andKikuchi, N., “Generating Optimal Topologies in Structural Design Using a Homogenization Method,”Comput. Methods Appl. Mech. Eng.,71,197–224 (1998).

    MathSciNet  Google Scholar 

  48. Hirano, T., Yamada, T., Teraki, J., Kumakawa, A., Niino, M., and Wakashima, K., “Improvement in Design Accuracy of Functionally Gradient Material for Space Plane Applications,” Proc. 7th Int. Symp. on Space Technology and Science, Tokyo, Japan (1990).

  49. Noda, N., “Thermal Stresses in Functionally Graded Materials,”J. Thermal Stresses,22,477–512 (1999).

    MathSciNet  Google Scholar 

  50. Rousseau, C.E., andTippur, H.V., “Influence of Elastic Gradient Profiles on Dynamically Loaded Functionally Graded Materials: Cracks along the Gradient,”Int. J. Solids Struct.,38,7839–7856 (2001).

    Google Scholar 

  51. Afsar, A.M., andSekine, H., “Optimum Material Distribution for Prescribed Apparent Fracture Toughness in Thick-walled FGM Circular Pipes,”Int. J. Pressure Vessels Piping,78,471–484 (2001).

    Article  Google Scholar 

  52. Chung, T.J., Neubrand, A., andRodel, J., “Effect of Residual Stress on the Fracture Toughness of Al203/Al Gradient Materials,”Euro Ceramics VII, PT1-3,206,965–968 (2002).

    Google Scholar 

  53. Ravichandran, K.S., “Thermal Residual Stresses in a Functionally Graded Material System,”Mater: Sci. Eng. A,201,269–276 (1995).

    Google Scholar 

  54. Lee, Y.D., andErdogan, F., “Residual/thermal Stresses in FGM and Laminated Thermal Barrier Coatings,”Int. J. Fract.,69,145–165 (1994).

    Google Scholar 

  55. Suresh, S., Giannakopoulos, A.E., andOlsson, M., “Elastoplastic Analysis of Thermal Cycling: Layered Materials with Sharp Interface,”J. Mech. Phys. Solids,42,979–1018 (1994).

    Google Scholar 

  56. Giannakopoulos, A.E., Suresh, S., andOlsson, M., “Elastoplastic Analysis of Thermal Cycling: Layered Materials with Compositional Gradients,”J. Mech. Phys. Solids,43,1335–1354 (1995).

    MathSciNet  Google Scholar 

  57. Finot, M., andSuresh, S., “Small and Large Deformation of Thick and Thin-film Multi-layers: Effects of Layer Geometry, Plasticity and Compositional Gradients,”J. Mech. Phys. Solids,44,683–721 (1996).

    Google Scholar 

  58. Hou, Q.R., andGao, J., “Thermal Stress Relaxation by a Composition-graded Intermediate Layer,”Mod. Phys. Lett.,14,685–692 (2000).

    Google Scholar 

  59. Rabin, B.H., Williamson, R.L., Bruck, H.A., Wang, X.-L., Watkins, T.R., andClarke, D.R., “Residual Strains in an Al2O3−Ni Joint Bonded with a Composite Interlayer: Experimental Measurements and FEM Analysis,”J. Am. Ceram. Soc.,81,1541–1549 (1998).

    Google Scholar 

  60. Rabin, B.H., andHeaps, R.J., “Powder Processing of Ni−Al2O3 FGM,”Ceram. Trans.,34,173–180 (1993).

    Google Scholar 

  61. Williamson, R.L., Rabin, B.H., andDrake, J.T., “Finite Element Analysis of Thermal Residual Stresses at Graded Ceramic-metal Interfaces. Part I. Model Description and Geometrical Effects,”J. Appl. Phys.,74,1310–1320 (1993).

    Article  Google Scholar 

  62. Chin, E.S.C., “Army Focused Research Team on Functionally Graded Armor Composites,”Mater. Sci. Eng.,A 259,155–161 (1999).

    Google Scholar 

  63. Bruck, H.A., “A One-dimensional Model for Designing Functionally Graded Materials to Attenuate Stress Waves,”Int. J. Solids Struct.,37,6383–6395 (2000).

    MATH  Google Scholar 

  64. Han, X., Liu, G.R., andLam, K.Y., “Transient Waves in Plates of Functionally Graded Materials,”Int. J. Numer. Methods Eng.,52,851–865 (2001).

    Article  Google Scholar 

  65. Liu, G.R., Han, X., Xu, Y.G., andLam, K.Y., “Material Characterization of Functionally Graded Material by Means of Elastic Waves and a Progressive-learning Neural Network,”Compos. Sci. Technol.,61,1401–1411 (2001).

    Article  Google Scholar 

  66. Lefebvre, J.E., Zhang, V., Gazalet, J., Gryba, T., andSadaune, V., “Acoustic wave Propagation in Continuous Functionally Graded Plates: An Extension of the Legendre Polynomial Approach,”IEEE Trans. Ultrason. Ferroelectr. Freq. Control,48,1332–1340 (2001).

    Article  Google Scholar 

  67. Li, Y., Ramesh, K.T., andChin, E.S.C., “Dynamic Characterization of Layered and Graded Structures under Impulsive Loading,”Int. J. Solids Struct.,38,6045–6061 (2001).

    Google Scholar 

  68. Marur, P.R., andTippur, H.V., “Evaluation of mechanical properties of functionally graded materials,”J. Test. Eval.,26,539–545 (1998).

    Google Scholar 

  69. Birman, V., “Stability of Functionally Graded Shape Memory Alloy Sandwich Panels,”Smart Mater. Struct.,6,278–286 (1997).

    Article  Google Scholar 

  70. Ho, K., andCarman, G. P., “Sputter Deposition of NiTi Thin Film Shape Memory Alloy Using a Heated Target”,Thin Solid Films,370,18–29 (2000).

    Article  Google Scholar 

  71. Bruck, H.A., Moore, C.L., and Valentine, T., “Characterization and Modeling of Bending Actuation in Functionally Graded SMA Wire-reinforced Polyurethanes,” EXPERIMENTAL MECHANICS, submitted (2002).

  72. Eischen, J.W., “Fracture of Nonhomogeneous Materials,”Int. J. Fract.,34,3–22 (1987).

    Google Scholar 

  73. Anlas, G., Santare, M.H., andLambros, J., “Numerical Calculation of Stress Intensity Factors in Functionally Graded Materials,”Int. J. Fract.,104,131–143 (2000).

    Article  Google Scholar 

  74. Dao, M., Gu, P., Maewal, A., andAsaro, R.J., “A Micromechanical Study of Residual Stresses in Functionally Graded Materials,”Acta Mater.,45,3265–3276 (1997).

    Google Scholar 

  75. Santare, M.H., andLambros, J., “Use of Graded Finite Elements to Model the Behavior of Nonhomogeneous Materials,”Trans. ASME, J. Appl. Mech.,67,819–822 (2000).

    Google Scholar 

  76. Biot, I., “Mechanics of Deformation and Acoustic Propagation in Porous Media,”J. Appl. Phys.,33,1482–1498 (1962).

    Article  MATH  MathSciNet  Google Scholar 

  77. Simon, B., Wu, J., Carlton, M., Kazarian, K.E., France, E., Evans, J., andZienkiewicz, O., “Poroelastic Dynamic Structural Models of Rhesus Spinal Motion Segments,”Spine,10,494–507 (1985).

    Google Scholar 

  78. Calladine, C., “Toroidal Elastic Supercoiling of DNA,”Biopolymers,79,1705–1713 (1980).

    Google Scholar 

  79. Calladine, C., andDrew, H., “Curvature and Flexibility of DNA: Sequence-directed Effects seen from a Structural Mechanics Viewpoint,”Japan Scientific Society Press, Tokyo/CRC Press, Boca Raton (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruck, H.A., Evans, J.J. & Peterson, M.L. The role of mechanics in biological and biologically inspired materials. Experimental Mechanics 42, 361–371 (2002). https://doi.org/10.1007/BF02412140

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02412140

Key Words

Navigation