Skip to main content
Log in

The effect of dose and time on the induction of genetic alterations insaccharomyces cerevisiae by aminoacridines in the presence and absence of visible light irradiation in comparison with the dose-effect-curves of mutagens with other type of action

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

Aminoacridines induce frameshift mutations and are photodynamically active, depending on whether visible light is absent or present. Therefore, a test system which allows to compare quantitatively the genetic effects of aminoacridines irradiated or unirradiated by visible light ought to be susceptible to the different DNA alterations which can be induced by these substances. For this reason in most experiments mitotic gene conversion and only in some selected experiments reverse mutation was chosen as the indicator of genetic activity. In contrast to mutation systems mitotic gene conversion has never shown a response specific to only some types of mutagens.

The three aminoacridine derivatives used-acridine orange (AO), proflavine (PF), and acridine yellow (AY)—were successful in the induction of convertants at two different loci. No locus-specificity could be observed. The time-dependent induction of convertants proceeds quickly but soon reaches—especially after treatment without light—a saturation point. The dose/effect-curve after treatment in the dark has a slope increasing with increasing concentration. Irradiation with visible light results in a dose/effect-curve consisting of three parts. At first the increase of convertants is nearly linear extending one (AY) to three (AO) orders of magnitude. After that a saturation effect begins at the point at which an effectiveness of the acridines in the dark is apparent. At high concentrations an induction of convertants can again be observed which is nearly the same as that after treatment in the dark.

To determine whether the dose/effect-curves obtained for gene conversion refer to similar curves for gene mutations after treatment with AO at the same locus not only gene conversions but also reverse mutations were scored for.

AO-treatment in the dark is ineffective in inducing reverse mutations. Irradiation with visible light results in a dose/effect-curve beeing parallel only in its first part to the dose/effect-curve obtained for gene conversion, while in its second part a mutation frequency decline can be observed.

Comparing the dose/effect-curves of AO resulting from the induction of gene conversion and gene mutation, and taking into account that no mutants can be induced by AO-treatment in the dark, the increase in convertants at high acridine-concentrations can be explained as an addition of light-dependent and light-independent effects. That means, in mutation systems at low concentrations of aminoacridines irradiation with visible light should cause transitions, transversions and microlesions, at intermediate concentrations frameshift lesions should begin to appear, and at very high concentrations nearly exclusively frameshift lesions should occur.

The dose/effect-curves of aminoacridines compared with those of other mutagens are very complex. The dose/effect-curves of the mutagens of other type of action tested are linear in a double logarithmic scale, and parallel for induced gene conversion and induced gene mutation. These results indicate that the gene conversion ability of a given compound depends on its mutagenic property. That means, many mutagens may exert specific genetic effects not directly but mainly in indirect ways by leading to DNA damage, a situation for repair synthesis resulting as well in mutations as recombinations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armstrong, R.W., Kurucsev, T., Strauss, U.P.: The interaction between acridine dyes and deoxyribonucleic acid. J. Amer. chem. Soc.92, 3174–3181 (1970)

    Article  CAS  Google Scholar 

  • Ball, C., Roper, J.A.: Studies on the inhibition and mutation of Aspergillus nidulans by acridines. Genet. Res.7, 207–221 (1966)

    PubMed  CAS  Google Scholar 

  • Barricelli, N.A., Del Zoppo, G.: Genotypic reversion by methylene blue: The orientation of guanine-hydromethyl-cytosine at mutated sites in r II mutants of phage T 4. Molec. gen. Genet.101, 51–58 (1968)

    Article  PubMed  CAS  Google Scholar 

  • Bradley, D.F., Wolf, M.K.: Aggregation of dyes bound to polyanions. Proc. nat. Acad. Sci. (Wash.)45, 944–952 (1959)

    Article  CAS  Google Scholar 

  • Brendel, M.: Induction of mutation in phage T 4 by extracellular treatment with methylene blue and visible light. Molec. gen. Genet.101, 111–115 (1968)

    Article  PubMed  CAS  Google Scholar 

  • Brenner, S., Barnett, L., Crick, F.H.C., Orgel, A.: The theory of mutagenesis. J. molec. Biol.3, 121–124 (1961)

    CAS  Google Scholar 

  • Davies, P.J., Evans, W.E., Parry, J.M.: Mitotic recombination induced by chemical and physical agents in the yeast Saccharomyces cerevisiae. Mutation Res.29, 301–314 (1975)

    Article  CAS  Google Scholar 

  • Delmelle, M., Duchesne, J.: Effect of light on dyes and photodynamic action on biomolecules. In: Pullmann, B., ed., p. 299. New York: Academic Press 1968

    Google Scholar 

  • Drake, J.W.: Heteroduplex heterozygotes in bacteriophage T 4 involving mutations of various dimensions. J. cell. comp. Physiol.64, Suppl. 1, 19–31 (1964)

    Article  CAS  Google Scholar 

  • Drake, J.W.: The molecular basis of mutation. San Francisco: Holden-Day 1970

    Google Scholar 

  • Drake, J.W., MacGuire, J.: Properties of r mutants of bacteriophage T 4 photodynamically induced in the presence of thiopyronin and psoralen. J. Virol1, 260–267 (1967)

    PubMed  CAS  Google Scholar 

  • Drummond, D.S., Simpson-Gildemeister, V.F.W., Peacocke, A.R.: Interaction of aminoacridines with deoxyribonucleic acid: effects of ionic strength, denaturation, and structure. Biopolymers3, 135–153 (1965)

    Article  CAS  Google Scholar 

  • Dulbecco, R., Vogt, M.: Studies on the induction of mutations in poliovirus by proflavin. Virology5, 236–243 (1958)

    Article  PubMed  CAS  Google Scholar 

  • Fahrig, R.: Acridine-induced mitotic gene conversion (paramutation) in Saccharomyces cerevisiae: the effect of two different modes of binding to DNA. Mutation Res.10, 509–514 (1970)

    PubMed  CAS  Google Scholar 

  • Fahrig, R.: Nachweis einer genetischen Wirkung von Organophosphor-Insektiziden. Naturwissenschaften60, 50–51 (1973)

    Article  PubMed  CAS  Google Scholar 

  • Freifelder, D., Davison, P.F., Geiduschek, E.P.: Damage by visible light to the acridine orange-DNA complex. Biophys. J.1, 389–400 (1961)

    Article  PubMed  CAS  Google Scholar 

  • Gräslund, A., Rigler, R., Ehrenberg, A.: Light induced free radicals in DNA-acridine complexes studied by ESR. FEBS Letters4, 227–230 (1969)

    Article  PubMed  Google Scholar 

  • Holliday, R.: A mechanism for gene conversion in fungi. Genet. Res.5, 282–304 (1964)

    Google Scholar 

  • Holliday, R.: Altered recombination frequencies in radiation sensitive strains of Ustilago. Mutation Res.4, 275–288 (1967)

    PubMed  CAS  Google Scholar 

  • Hurwitz, J., Furth, J.J., Malamy, M., Alexander, M.: The role of deoxyribonucleic acid in ribonucleic acid synthesis, III. The inhibition of the enzymatic synthesis of ribonucleic acid and deoxyribonucleic acid by actinomycin D and proflavin. Proc. nat. Acad. Sci. (Wash.)48, 1222–1230 (1962)

    Article  CAS  Google Scholar 

  • Imray, P., MacPhee, D.G.: Induction of frameshifts and basepair substitutions by acridine orange plus visible light in bacteria. Mutation Res.20, 433–435 (1973)

    PubMed  CAS  Google Scholar 

  • Kohno, T., Roth, J.R.: Proflavin mutagenesis of bacteria. J. molec. Biol.89, 17–32 (1974)

    Article  PubMed  CAS  Google Scholar 

  • Lerman, L.S.: The structure of the DNA-acridine complex. Proc. nat. Acad. Sci. (Wash.)49, 94–102 (1963)

    Article  CAS  Google Scholar 

  • Lerman, L.S.: Acridine mutagens and DNA structure. J. cell. comp. Physiol. 64, Suppl.1, 1–18 (1964)

    Article  Google Scholar 

  • Magni, G.E., von Borstel, R.C., Sora, S.: Mutagenic action during meiosis and antimutagenic action during mitosis by 5-aminoacridine in yeast. Mutation Res1, 227–230 (1964)

    Google Scholar 

  • Malling, H.V., De Serres, F.J.: Mutagenicity of alkylating carcinogens. Ann. N.Y. Acad. Sci.163, 788–800 (1969)

    CAS  Google Scholar 

  • Manney, R.T., Mortimer, R.K.: Allelic mapping in yeast by X-ray-induced mitotic reversion. Science143, 581–583 (1964)

    PubMed  CAS  Google Scholar 

  • Mohn, G.: 5-Methyltryptophan resistance mutations in Escherichia coli K-12. Mutagenic activity of monofunctional alkylating agents including organophosphorus insecticides. Mutation Res.20, 7–15 (1973)

    PubMed  CAS  Google Scholar 

  • Nakai, S., Saeki, T.: Induction of mutation by photodynamic action in Escherichia coli. Genet. Res.5, 158–161 (1964)

    Google Scholar 

  • Orgel, A., Brenner, S.: Mutagenesis of bacteriophage T 4 by acridines. J. molec. Biol.3, 762–768 (1961)

    Article  PubMed  CAS  Google Scholar 

  • Peacocke, A.R., Skerrett, J.N.H.: The interaction of aminoacridines with nucleic acids. Trans. Faraday Soc52, 261–279 (1956)

    Article  CAS  Google Scholar 

  • Ritchie, D.A.: Mutagenesis with light and proflavin in phage T 4 Genet. Res.5, 168–169 (1964)

    Google Scholar 

  • Ritchie, D.A.: Mutagenesis with light and proflavin in phage T 4, 2. Properties of the mutants. Genet. Res.6, 474–478 (1965)

    Article  PubMed  CAS  Google Scholar 

  • Roman, H., Jacob, F.: Effect de la lumière ultraviolette sur la recombinaison gènètique entre allèles chez la levure. C. R. Acad. Sci. (Paris)245, 1032–1034 (1957)

    CAS  Google Scholar 

  • Sarabhai, A., Lamfrom, H.: Mechanism of proflavin mutagenesis. Proc. nat. Acad. Sci. (Wash.)63, 1196–1197 (1969)

    Article  CAS  Google Scholar 

  • Simon, M.J., Van Vunakis, H.: The photodynamic reaction of methylene blue with deoxyribonucleic acid. J. molec. Biol.4, 488–499 (1962)

    Article  PubMed  CAS  Google Scholar 

  • Stewart, C.R.: Mutagenesis by acridine yellow in Bacillus subtilis. Genetics59, 23–31 (1968)

    PubMed  CAS  Google Scholar 

  • Streisinger, G., Okada, Y., Emrich, J., Newton, J., Tsugita, A., Terzaghi, E., Inouye, M.: Frameshift mutations and the genetic code. Cold Spr. Harb. Symp. quant. Biol.31, 77–84 (1966)

    CAS  Google Scholar 

  • Sussenbach, J.S., Berends, W.: Photodynamic degradation of guanine. Biochim. biophys. Acta (Amst.)95, 184–185 (1965)

    CAS  Google Scholar 

  • Wacker, A., Turek, G., Gestenberger, A.: Zum Wirkungsmechanismus photodynamischer Farbstoffe. Naturwissenschaften50, 377 (1963)

    Article  CAS  Google Scholar 

  • Webb, R.B., Kubitschek, H.E.: Mutagenic and antimutagenic effects of acridine orange in Escherichia coli. Biochem. biophys. Res. Commun.13, 90–94 (1963)

    Article  CAS  Google Scholar 

  • Whitehouse, H.L.K., Hastings, P.J.: The analysis of genetic recombination on the polaron hybrid DNA model. Genet. Res.6, 27–92 (1965)

    Google Scholar 

  • Wickerham, L.J.: A critical evaluation of the nitrogen assimilation test commonly used in the classification of yeast. J. Bact.52, 293–301 (1964)

    Google Scholar 

  • Witkin, E.M.: Mutations in Escherichia coli induced by chemical agents. Cold Spr Harb. Symp. quant. Biol.12, 256–269 (1947)

    CAS  Google Scholar 

  • Witkin, E.M.: The effect of acriflavin on photoreversal of lethal and mutagenic damage produced in bacteria by ultraviolet light. Proc. nat. Acad. Sci. (Wash)50, 425–430 (1963)

    Article  CAS  Google Scholar 

  • Zampieri, A., Greenberg, J.: Mutagenesis by acridine orange and proflavin in Escherichia coli strain S. Mutation Res.2, 552–556 (1965)

    PubMed  CAS  Google Scholar 

  • Zimmermann, F.K.: Induction of mitotic gene conversion by mutagens. Mutation Res.11, 327–337 (1971)

    PubMed  CAS  Google Scholar 

  • Zimmermann, F.K., Schwaier, R.: Induction of mitotic gene conversion with nitrous acid, 1-methyl-3-nitro-1-nitroso-guanidine and other alkylating agents in Saccharomyces cerevisiae. Molec. gen. Genet.100, 63–76 (1967)

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by F. Kaudewitz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fahrig, R. The effect of dose and time on the induction of genetic alterations insaccharomyces cerevisiae by aminoacridines in the presence and absence of visible light irradiation in comparison with the dose-effect-curves of mutagens with other type of action. Molec. Gen. Genet. 144, 131–140 (1976). https://doi.org/10.1007/BF02428101

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02428101

Keywords

Navigation