Skip to main content
Log in

Second-order ridge axis discontinuities in the south Atlantic: Morphology, structure, and evolution

  • Published:
Marine Geophysical Researches Aims and scope Submit manuscript

Abstract

Continuous along-axis Sea Beam coverage of the slow-intermediate spreading (34–38 mm yr−1 full rate) southern Mid-Atlantic Ridge (25°–27°30′S and 31°–38° S) shows that the ridge axis is segmented by both rigid and non-rigid discontinuities. Following the model of Macdonald et al. (1988b), a hierarchy of four orders is proposed for ridge axis discontinuities based on a continuum of relative age and distance offset across the discontinuites. This paper discusses the characteristics associated with five second-order discontinuities found in the areas surveyed. First-order discontinuities represent rigid offsets, transform faults, whereas non-rigid discontinuities fall into the second, third and fourth orders. Like transform fault boundaries, second-order discontinuities have distinctive morphologic signatures both on and off-axis-discordant zones — and therefore are better defined than third- or fourth-order discontinuities. Second-order discontinuities are offsets that range in distance from less than 10 km to approximately 30 km and vary in age offset from 0.5 to approximately 2.0 m.y. The variable morphotectonic geometries associated with these discontinuities indicate that horizontal shear strains are accommodated by both extensional and strike-slip tectonism and that the geometries are unstable in time. Three characteristic geometries are recognized: (1)en echelon jog in the plate boundary where ridge axis tips overlap slightly, (2)en echelon jog in the plate boundary where ridge axes are separated by an extensional basin whose long axis is oriented parallel to the strike of the adjoining ridge axes, and (3) oblique offset characterized by a large extensional basin that is oriented approximately 45° to the strike of the ridge axes. In the case of the third type, evidence for short strands of strike-slip tectonism that link an obliquely oriented extensional basin flanking ridge tips is often apparent. Analysis of the detailed bathymetric and magnetic data collected over the second-order discontinuities and their off axis terrain out to 5–7 m.y. documents that second-order discontinuities can follow several evolutionary paths: they can evolve from transform fault boundaries through prolonged asymmetric spreading, they may migrate along strike leaving a V-shaped wake, and they may remain in approximately the same position but oscillate slightly back and forth. In addition, a small change in the pole of relative motion occurring 4–5 Ma is thought to have resulted in the initiation of at least one second-order discontinuity in the survey area. A geologic model is proposed which involves the interplay of lithospheric thickness, asymmetric spreading, temporal and spatial variability of along-axis magmatic input and changes in the poles of relative motion to explain the origin, morphology and evolution of second-order ridge axis discontinuities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott, D., 1986, A Statistical Correlation between Ridge Crest Offsets and Spreading Rates,Geophys. Res. Lett. 13, 157–160.

    Google Scholar 

  • Blackman, D. and Forsyth, D. W., 1990, Gravity and Tectonics of the Mid-Atlantic Ridge 25°–27°30′S,J. Geophys. Res. (in review).

  • Born, G. H., Mitchell, J. L., and Heyler, G. A., 1987, Design of the GEOSAT Exact Repeat Mission,Johns Hopkins APL Tech, Digest 8, 260–266.

    Google Scholar 

  • Brozena, J., 1986, Temporal and Spatial Variability of Seafloor Spreading Processes in the Northern South Atlantic,J. Geophys. Res. 91, 497–510.

    Google Scholar 

  • Brozena, J. and Chayes, D., 1988, A SEABEAM Study of the Mid-Atlantic Ridge, 15°–17° S,EOS Trans Am. Geophys. Union 69, 1494.

    Google Scholar 

  • Cande, S., Vogt, P., and Fox, P. J., 1987, Detailed Investigations of a Flowline Corridor in the South Atlantic: Part II Survey of 50 to 70 m.y. Old Crust on the West Flank,EOS Trans. Amer. Geophys. Union 68, 1491.

    Google Scholar 

  • Cande, S., LaBreque, J. L., and Haxby, W. B., 1988, Plate Kinematics of the South Atlantic: Chron 34 to Present,J. Geophys. Res. 93, 13 479–13 492.

    Google Scholar 

  • Carbotte, S., Welch, S., and Macdonald, K. C., 1991, Spreading Rates, Rift Propagation, Fracture Zone Offset Histories during the Past 5 my on the Mid-Atlantic Ridge; 25°–27°30′S and 31°–34°30′S,Marine Geophys. Res. 13, 51–80 (this issue).

    Google Scholar 

  • Crane, K. 1976, The Intersection of the Siqueiros Transform Fault and the East Pacific Rise,Marine Geology 21, 25–46.

    Article  Google Scholar 

  • Crane, K., 1985, The Spacing of Rift Axis Highs: Dependence upon Diapiric Processes in the Underlying Asthenosphere?Earth Planet. Sci. Lett. 72, 405–414.

    Article  Google Scholar 

  • Demets, C., Gordon, R., Stein, S., and Argus, D., 1990, Current Plate Motions,Geophys. J. Int. 101, 425–478.

    Google Scholar 

  • Forsyth, D. and Wilson, B., 1984, Three-Dimensional Temperature Structure of a Ridge-Transform-Ridge System,Earth Planet, Sci. Lett. 70, 355–362.

    Article  Google Scholar 

  • Fox, P. J. and Gallo, D. G., 1984, A Tectonic Model for RidgeTransform-Ridge Plate Boundaries: Implications for the Structure of Oceanic Lithosphere,Tectonophys. 104, 208–242.

    Article  Google Scholar 

  • Fox, P. J., Grindlay, N. R., Macdonald, K. C., Bicknell, J., and Forsyth, D. W., 1985, The Morphotectonic Character of the Mid-Atlantic Ridge between 31°–34° S: Implications for Plate Accretion,EOS Trans. Amer. Geophys. Union 66, 1078.

    Google Scholar 

  • Fox, P. J. and Macdonald, K. C., 1986, Thoughts on Ridge Axis Discontinuities: Implications for Accretionary Processes,EOS Trans. Amer. Geophys. Union 76, 360.

    Google Scholar 

  • Fox, P. J., Grindlay, N. R., and Macdonald, K. C., 1991, The Mid-Atlantic Ridge (31°S–34°30′S): Temporal and Spatial Variations of Accretionary Processes,Marine Geophys. Res. 13, 1–20 (this issue).

    Google Scholar 

  • Grindlay, N. R., Fox, P. J., Macdonald, K. C., Cande, S., Forsyth, D., and Vogt, P., 1987, Ridge Axis Discordant Zones in the South Atlantic: Morphology, Structure, Evolution and Significance,EOS Trans. Am. Geophys. Union 68, 1491.

    Google Scholar 

  • Grindlay, N. R., Fox. P. J., and Vogt, P. 1990, Morphology and Tectonics of the Southern Mid-Atlantic Ridge: 25°–27°30′S from Sea Beam and Magnetic Data,J. Geophys. Res. (in review).

  • Heezen, B. G. and Tharp, M., 1977, World Ocean Floor, Office of Naval Research, U.S. Navy.

  • Hey, R. N., 1977, A New Class of Pseudofaults and their Bearing on Plate Tectonics: A Propagation Rift Model,Earth Planet. Sci. Lett. 37, 321–325.

    Article  Google Scholar 

  • Hey, R. N. and Wilson, D. S., 1982, Propagation Rift Explanation for the Tectonic Evolution of the Northeast Pacific — The Pseudomovie,Earth Planet. Sci. Lett. 58, 167–188.

    Article  Google Scholar 

  • Johnson, G. L, and Vogt, P. R., 1973, Mid-Atlantic Ridge from 47° to 51° N,Geol. Soc. Amer. Bull. 84, 3443–3462.

    Article  Google Scholar 

  • Kappel, E. and Ryan, W.; 1986, Evidence for Volcanic Episodicity and a Non-Steady State Rift Valley along Northeast Pacific Spreading Centers: Evidence from Sea MARC I,J. Geophys. Res. 91, 13,925–13,940.

    Google Scholar 

  • Karson, J. and Dick, H., 1983, Tectonics of Ridge-Transform Intersections at the Kane Fracture Zone,Marine Geophys. Res 6, 51–98.

    Article  Google Scholar 

  • Karson, J., Thompson, G., Humphris, S. E., Edmond, J. M., Bryan, W. B., Brown, J. R., Winters, A. T., Pockalny, R. A., Casey, J. F., Campbell, A. C., Klinkhammer, G., Palmer, M. R., Kinzler, R. J., and Sulanowska, M. M., 1987, Along-Axis Variations in Seafloor Spreading in the MARK Area,Nature 328, 681–685.

    Article  Google Scholar 

  • Karson, J., 1986, Lithosphere Age, Depth and Structural Complications Resulting from Migrating Transform Faults, in Oceanic Fracture Zones,J. Geol. Soc. Lond. 143, 785–788.

    Google Scholar 

  • Kent, D. and Gradstein, F. M., 1986, A Jurassic to Recent Chronology; in Vogt, P. R. and Tucholke, B. E. (eds.),The Geology of North America, Volume M, The Western North Atlantic Region: Geological Society of America, 45–50.

  • Kong, L. S., Detrick, R. S., Fox, P. J., Mayer, L. A., and Ryan, W. B. F., 1988, The Morphology and Tectonics of the MARK Area from Sea Beam and SeaMARC I Observations (Mid-Atlantic Ridge 23°N),Marine Geophys. Res. 10, 59–90.

    Article  Google Scholar 

  • Kuo, B.-Y. and Forsyth, D. W., 1988, Gravity Anomalies of the Ridge-Transform System in the South Atlantic between 31° and 34.5° S: Upwelling Centers and Variations in Crustal Thickness,Mar. Geophys. Res. 10, 205–232.

    Article  Google Scholar 

  • Langmuir, C. H., Bender, J. F., and Batiza, R., 1986, Petrologic and Tectonic Segmentation of the East Pacific Rise, 5°30′–14°30′N,Nature 322, 422–429.

    Article  Google Scholar 

  • LeDouaran, S. Needham, H. D., and Francheteau, J., 1982, Pattern of Opening Rates along the Axis of the Mid-Atlantic Ridge,Nature 300, 254–257.

    Article  Google Scholar 

  • Le Pichon, X., 1968, Seafloor Spreading and Continental Drift,J. Geophys. Res. 73, 3661–3697.

    Google Scholar 

  • Lin, J., Purdy, G. M., Schouten, H., Sempere, J-C., and Zervas, C., 1990, Evidence for Focused Magmatic Accretion along the Mid-Atlantic Ridge,Nature 344, 627–632.

    Article  Google Scholar 

  • Lonsdale, P., 1977, Structural Geomorphology of a Fast-Spreading Rise Crest: The East Pacific Rise near 3°25′8,Marine Geophys Res. 3, 251–293.

    Article  Google Scholar 

  • Lonsdale, P., 1985, Nontransform Offsets of the Pacific-Cocos Plate Boundary, and their Traces on the Rise Flank,Geol. Soc. Amer. Bull. 96, 313–327.

    Article  Google Scholar 

  • Macdonald, K. C. and Fox, P. J., 1983, Overlapping Spreading Centers: New Accretion Geometry on the East Pacific Rise,Nature 302, 55–58.

    Article  Google Scholar 

  • Macdonald, K. C., Sempere, J. C., and Fox, P. J., 1984, East Pacific Rise from Siqueiros to Orozco Fracture Zones: Along-Strike Continuity of the Axial Neovolcanic Zone and Structure and Evolution of Overlapping Spreading Centers,J. Geophys. Res. 89, 6044–6069.

    Google Scholar 

  • Macdonald, K. C., Bicknell, J., Welch, S., Haymon, R., Miller, S., Fox, P. J., and Forsyth, D. W., 1985, Crustal Accretion along the Mid-Atlantic Ridge,,31°–38° S,EOS Trans. Am., Geophys, Union 66, 1289.

    Google Scholar 

  • Macdonald, K. C., 1986, The Crest of the Mid-Atlantic Ridge: Models for Crustal Generation Processes and Tectonics, in Vogt, P. R. and Tucholke, B. E. (eds.),The Geology of North America, Volume M. The Western North Atlantic Region, Geological Society of America, 51–68.

  • Macdonald, K. C., Castillo, D. Z., Miller, S. P., Fox, P. J., Kastens, K. A., and Bonatti, E., 1986, 1. Deep-Tow Studies of the Vema Fracture Zone: Tectonics of a Major Slow Slipping Transform Fault and its Intersection with the Mid-Atlantic Ridge,J. Geophys. Res. 91, 3334–3354.

    Google Scholar 

  • Macdonald, K. C., Sempere, J. C., and Fox, P. J., 1987, Tectonic Evolution of Ridge-Axis Discontinuities by the Meeting, Linking or Self-Decapitation of Neighboring Ridge Segments,Geology 15, 993–997.

    Article  Google Scholar 

  • Macdonald, K. C., Haymon, R. M., Miller, S. P., Sempere, J.-C., and Fox, P. J., 1988a, Deep-Tow and Seabeam Studies of Dueling Propagating Ridges on the East Pacific Rise Near 20°40′S,J. Geophys. Res. 93, 2875–2898.

    Google Scholar 

  • Macdonald, K. C., Fox, P. J., Perram, L. J., Eisen, M. F., Haymon, R. M., Miller, S. P., Carbotte, S. M., Cormier, M.-H., and Shor, A. N., 1988b, A New View of the Mid-Ocean Ridge from the Behavior of Ridge-Axis Discontinuities,Nature 335, 217–225.

    Article  Google Scholar 

  • Marks, K. M. and Sailor, R. V., 1986, Comparison of GEOS-3 and SEASAT Altimeter Resolution Capabilities,Geophys. Res. Lett. 13, 697–700.

    Google Scholar 

  • Minster, J. B. and Jordan, T. B., 1978, Present-Day Plate Motions,J. Geophys. Res. 83, 5331–5354.

    Google Scholar 

  • Morgan, W. J., 1986, Rises, Trenches, Great Faults, and Crustal Blocks,J. Geophys. Res. 86, 1858–1872.

    Google Scholar 

  • Parker, R. L. and Oldenburg, D. W., 1973, Thermal Model of Ocean Ridges,Nature Phys. Sci. 242, 137–139.

    Google Scholar 

  • Phillips, J. D. and Fleming, H. S., 1978, Multi-Beam Sonar Study of the Mid-Atlantic Ridge Rift Valley, 36°-37°N, Geological Society of America, MC-19.

  • Phipps Morgan, J. and Parmentier, E. M., 1984, Lithospheric Stress near a Ridge-Transform Intersection,Geophys. Res. Lett. 11, 113–116.

    Google Scholar 

  • Phipps Morgan, J. and Parmentier, E. M., 1985, Causes and Rate-Limiting Mechanisms of Ridge Propagation: A Fracture Mechanics Model,J. Geophys. Res. 90, 8603–8612.

    Google Scholar 

  • Pockalny, R., Detrick, R., and Fox, P. J., 1988, The Morphology and Tectonics of the Kane Transform from Sea Beam Bathymetric Data,J. Geophys. Res. 93, 3179–3193.

    Google Scholar 

  • Pollard, D. and Aydin, A., 1984, Propagation and Linkage of Oceanic Ridge Segments,J. Geophys. Res. 89, 10,017–10,028.

    Google Scholar 

  • Ramberg, I., Gray, D. F., and Raynolds, R. G. H., 1977, Tectonic Evolution of the FAMOUS Area of the Mid-Atlantic Ridge Lat. 35°50′ to 37°20′N,Geol. Soc. Amer. Bull. 88, 609–620.

    Article  Google Scholar 

  • Rona, P. and Gray, D., 1980, Structural Behavior of Fracture Zones Symmetric and Asymmetric about a Spreading Axis: Mid-Atlantic Ridge (Latitude 23° N to 27° N),Geol. Soc. Amer. Bull. 91, 485–494.

    Article  Google Scholar 

  • Sandwell, D. T. and McAdoo, D. C., 1988, Marine Gravity of the Southern Ocean and Antarctic Margin from GEOSAT,J. Geophys. Res. 93, 10 389–10 397.

    Google Scholar 

  • Schouten, H. and White, R. S., 1980, Zero-Offset Fracture Zones,Geology 8, 175–179.

    Article  Google Scholar 

  • Schouten, H. and Klitgord, K. D., 1982, The Memory of the Accreting Plate Boundary and the Continuity of Fracture Zones,Earth Planet. Sci. Lett. 59, 255–266.

    Article  Google Scholar 

  • Schouten, H., Klitgord, K. D., and Whitehead, J. A., 1985, Segmentation of Mid-Ocean Ridges,Nature 317, 225–229.

    Article  Google Scholar 

  • Schulz, N., Detrick, R. S., and Miller, S. P., 1988, Two- and Three-Dimensional Inversions of Magnetic Anomalies in the MARK Area (Mid-Atlantic Ridge 23° N),Marine Geophys. Res. 10, 41–57.

    Article  Google Scholar 

  • Searle, R. C., 1979, Side-Scan Sonar Studies of North Atlantic Fracture Zones,J. Geol. Soc. London 136, 283–293.

    Google Scholar 

  • Searle, R. C. and Laughton, A. S., 1977, Sonar Studies of the Mid-Atlantic Ridge and Kurchatov Fracture Zone,J. Geophys. Res. 82, 5313–5328.

    Article  Google Scholar 

  • Sempere, J. C., Purdy, G. M., and Schouten, H., 1989, The Segmentation of the Mid-Atlantic Ridge between the Kane and Atlantis Fracture Zones,EOS Trans. Amer. Geophys. Union 70, 455.

    Google Scholar 

  • Severinghaus, J. P. and Macdonald, K. C., 1988, High Inside Corners at’ Ridge-Transform Intersections,Marine Geophys. Res. 9, 353–367.

    Article  Google Scholar 

  • Sigurdsson, H. and Sparks, S. R. J., 1978, Lateral Magma Flow within Rifted Icelandic Crust,Nature 274, 126–130.

    Article  Google Scholar 

  • Stein, S., Melosh, H. J., and Minster, J. B., 1977, Ridge Migration and Asymmetric Sea-Floor Spreading,Earth Planet. Sci. Lett. 36, 51–62.

    Article  Google Scholar 

  • Tamsett, D. and Searle, R., 1988, Structure and Development of the Mid-Ocean Ridge Plate Boundary in the Gulf of Aden: Evidence from GLORIA Side Scan Sonar,J. Geophys. Res. 93, 3157–3178.

    Google Scholar 

  • Vogt, P., 1986, Plate Kinematics during the Last 20 m.y. and the Problems of ‘Present’ Motions, in Vogt, P. R. and Tucholke, B. E. (eds.),The Geology of North America, Volume M, The Western North Atlantic Region, Geological Society of America, 405–426.

  • Vogt, P., Cande, S., Fox, P. J., and Grindlay, N. R., 1987, Detailed Investigation of a Flowline Corridor in the South Atlantic: Part I — Mid-Atlantic Ridge Crestal Area,EOS Trans. Amer. Geophys. Union 68, 1491.

    Google Scholar 

  • Welch, S., Macdonald, K. C., Miller, S. P., and Fox, P. J., 1986, Magnetic Analysis of Slow Spreading in the South Atlantic,EOS Trans. Amer. Geophys. Union 68, 1227.

    Google Scholar 

  • Whitehead, J., Dick, H., and Schouten, H., 1985, Mechanism for Magmatic Accretion under Spreading Centers,Nature 312, 146–148.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grindlay, N.R., Fox, P.J. & MacDonald, K.C. Second-order ridge axis discontinuities in the south Atlantic: Morphology, structure, and evolution. Mar Geophys Res 13, 21–49 (1991). https://doi.org/10.1007/BF02428194

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02428194

Key words

Navigation