Skip to main content
Log in

DNA contents inPaspalum spp. determined by flow cytometry

  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

DNA contents in nuclei isolated from 81 accessions ofPaspalum, representing 35 species, was determined by laser flow cytometry. Nuclei were isolated by chopping leaf base tissue in Tris/HCl buffer containing 1 % Triton X-100 and fixed in EtOH. Fixation, or no fixation, of nuclei in 70% or 95% EtOH did not affect estimates of DNA contents in DAPI-stained nuclei. DNA contents, among the species examined, varied approximately four-fold (1.02 – 3.86 pg/2C nucleus). Coefficients of variation ranged from less than 1% to approximately 5% and did not increase following fixation. Variation in DNA contents between plants within accessions was less than 0.1%. Significant differences in DNA contents estimates within and between species were detected. Data presented suggested that DNA content is a useful descriptor for characterization of plant genetic resources. The occurrence of significant levels of variation within and betweenPaspalum species indicates that estimates of DNA contents may be useful for characterization and identification ofPaspalum cytotypes. In addition, the identification and maintenance of variability for DNA contents withinPaspalum spp. might be useful as a means to capture genomic adaptations to ecological variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arheim, N., T. White & W.E. Rainey, 1990. Application of PCR: Organismal and population biology. BioScience 40:174–182.

    Article  Google Scholar 

  • Arumuganathan, K. & E. Earle, 1991a. Estimation of nuclear DNA content of plants by flow cytometry. Plant Molec. Biol. Reptr. 9:229–241.

    Article  CAS  Google Scholar 

  • Arumuganathan, K. & E.D. Earle, 1991b. Nuclear DNA content of some important plant species. Plant Molec. Biol. Rptr. 9:208–218.

    CAS  Google Scholar 

  • Bergounioux, C. & S.C. Brown, 1991. Plant cell cycle analysis with isolated nuclei. Methods Cell Biol. 33:563–573.

    Google Scholar 

  • Brown, W.V., 1950. A cytological study of some Texas Gramineae. Bull. Torrey Bot. Club 77:63–76.

    Article  Google Scholar 

  • Brown, W.V., 1951. Chromosome numbers of some Texas grasses. Bull. Torrey Bot. Club 78:292–299.

    Article  Google Scholar 

  • Burson, B.L., 1975. Cytology of some apomicticPaspalum species. Crop Sci. 15:229–232.

    Article  Google Scholar 

  • Burson, B.L., 1991a. Genome relationships between tetraploid and hexaploid biotypes of dallisgrass,Paspalum dilatatum. Bot. Gaz. 152:219–223. Burson, B.L.,1991b. Homology of chromosome of the X genomes in common and Uruguayan dallisgrass,Paspalum dilatatum. Genome 34:950–953.

    Article  Google Scholar 

  • Burson, B.L. & H.W. Bennett, 1971a. Meiotic and reproductive behavior of some introducedPaspalum species. J. Miss. Acad. Sci. 17:5–8.

    Google Scholar 

  • Burson, B.L. & H.W. Bennett, 1971b. Chromosome numbers, microsporogenesis, and mode of reproduction of sevenPaspalum species. Crop Sci. 11:292–294.

    Article  Google Scholar 

  • Burton, G.W., 1940. A cytological study of some species in the genusPaspalum. J. Agric. Res. 60:193–197.

    Google Scholar 

  • Burton, G. W., 1942. A cytological study of some species in the tribe Paniceae. Amer. J. Bot. 29:355–359.

    Article  Google Scholar 

  • Darlington, C.D. & A.P. Wylie, 1961. Chromosome atlas of flowering plants. Hafner Pub. Co., New York.

    Google Scholar 

  • DeRocher, E.J., K.R. Harkins, D. W. Galbraith & H.J. Bohnert, 1990. Developmentally regulated systemic endopolyploidy in succulents with small genomes. Science 250:99–101. Dolezel, J., P. Binarova & S. Lucretti, 1989. Analysis of nuclear DNA content in plant cells by flow cytometry. Biol. Plant. 31:113–120.

    CAS  Google Scholar 

  • Galbraith, D.W., K.R. Harkins, J.R. Maddox, N.M. Ayres, D.P. Sharma & E. Firoozabady, 1983. Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220:1049–1051.

    CAS  PubMed  Google Scholar 

  • Galbraith, D.W., 1989. Analysis of higher plants by flow cytometry and cell sorting. Inter. Rev. Cytol. 116:165–229.

    Article  Google Scholar 

  • Grime, J.P. & M.A. Mowforth, 1982. Variation in genome size — an ecological interpretation. Nature 299:151–153.

    Article  Google Scholar 

  • Iyengar, G.A.S. & S.K. Sen, 1978. Nuclear DNA content of several wild and cultivatedOryza species. Environ. Exp. Bot. 18:219–224.

    Article  CAS  Google Scholar 

  • Jarret, R.L., M. Spinks, G. Lovell & A.G. Gillaspie, 1990. The S-9 plant germplasm collection. Diversity 6:23–25.

    Google Scholar 

  • Laurie, D.A. & M.D. Bennett, 1985. Nuclear DNA content in the generaZea andSorghum. Intergeneric, interspecific and intraspecific variation. Heredity 55:307–313.

    Google Scholar 

  • Michaelson, M.J., H.J. Price, J.R. Ellison & J.S. Johnson, 1991. Comparison of plant DNA contents determined by feulgen microspectrophotometry and laser flow cytometry. Amer. J. Bot. 78:183–188.

    Article  CAS  Google Scholar 

  • Nielsen, E.L., 1939. Grass studies III. Additional somatic chromosome complements. Amer. J. Bot. 26:366–372.

    Article  Google Scholar 

  • Ohri, D. & T.N. Khoshoo, 1986. Genome size in gymnosperms. Plant Syst. Evol. 153:119–132.

    Article  Google Scholar 

  • Ozias-Akins, P. & R.L. Jarret, 1994. Flow cytometry detects ploidy level variation inIpomoea batatas. J. Amer. Soc. Hort. Sci. 119:110–115.

    CAS  Google Scholar 

  • Pitman, M.W., B.L. Burson & E.C. Bashaw, 1987. Phylogenetic relationships amongPaspalum species with different base chromosome numbers. Bot. Gaz. 148:130–135.

    Article  Google Scholar 

  • Price, K., K. Bachmann, K.L. Chambers & J. Riggs, 1980. Detection of intraspecific variation in nuclear DNA content inMicroseris douglasii. Bot. Gaz. 142:156–159.

    Article  Google Scholar 

  • Quarin, C.L. & G.A. Norrmann, 1990. Interspecific hybrids between fivePaspalum species. Bot. Gaz. 26:366–369.

    Article  Google Scholar 

  • Rayburn, A.L., J.A. Auger, E.A. Benzinger & A.G. Hepburn, 1989. Detection of intraspecific DNA content variation inZea mays by flow cytometry. J. Exp. Bot. 40:1179–1183.

    CAS  Google Scholar 

  • Saura, F., 1941. Cariologia de algunas especies del genera Paspalum. Inst. Genet. Fac. Agron. y Vet., Univ. Buenos Aires 2:41–48.

    Google Scholar 

  • Sims, L. & H.J. Price, 1985. Nuclear DNA content variation inHelianthis annuus (Asteraceae). Amer. J. Bot. 72:1213–1219.

    Article  Google Scholar 

  • Wakamiya, I., R.J. Newton, J.S. Johnson & H.J. Price, 1993. Genome size and environmental factors in the genusPinus. Amer. J. Bot. 80:1235–1241.

    Article  Google Scholar 

  • Walbot, V. & C. Cullis, 1985. Rapid genomic change in higher plants. Ann. Rev. Plant Physiol. 36:1133–1138.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jarret, R.L., Ozias-Akins, P., Phatak, S. et al. DNA contents inPaspalum spp. determined by flow cytometry. Genet Resour Crop Evol 42, 237–242 (1995). https://doi.org/10.1007/BF02431258

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02431258

Key words

Navigation