Skip to main content
Log in

A nonlinear extensible 4-node shell element based on continuum theory and assumed strain interpolations

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Summary

A quadrilateral continuum-basedC 0 shell element is presented, which relies on extensible director kinematics and incorporates unmodified three-dimensional constitutive models. The shell element is developed from the nonlinear enhanced assumed strain (EAS) method advocated by Sino & Armero [1] and formulated in curvilinear coordinates. Here, the EAS-expansion of the material displacement gradient leads to the local interpretation of enhanced covariant base vectors that are superposed on the compatible covariant base vectors. Two expansions of the enhanced covariant base vectors are given: first an extension of the underlying single extensible shell kinematic and second an improvement of the membrane part of the bilinear element. Furthermore, two assumed strain modifications of the compatible covariant strains are introduced such that the element performs well even in the case of very thin shells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. C. Simo and F. Armero, Geometrically nonlinear enhanced strain mixed methods and the method of incompatible modes,Int. J. Num. Meth. Eng. 33 (1992) 1413–1449.

    Article  MATH  MathSciNet  Google Scholar 

  2. E. Ramm, Geometrisch nichtlineare Elastostatik und finite Elemente, Habilitation, Bericht Nr. 76-2, Institut für Baustatik, Universität Stuttgart, (1976).

  3. T. J. R. Hughes and W. K. Liu, Nonlinear finite element analysis of shells: Part I. Threedimensional shells.Comp. Meth. Appl. Mech. Eng. 26 (1981) 331–362.

    Article  MATH  MathSciNet  Google Scholar 

  4. J. C. Simo, D. D. Fox and M. S. Rifar, On a stress resultant geometrically exact shell model. Part III: Computational aspects of the nonlinear theory.Comp. Meth. Appl. Mech. Eng. 79 (1990) 21–70.

    Article  MATH  Google Scholar 

  5. F. Gruttmann, W. Wagner, P. Wriggers, A nonlinear quadrilateral shell element with drilling degrees of freedom,Archive Appl. Mech. 62 (1992) 474–486.

    Article  MATH  Google Scholar 

  6. Y. Basar, Y. Ding and W. B. Krätzig, Finite-rotatation shell elements via mixed formulation,Comp. Mech. 10, (1992) 289–306.

    Article  MATH  Google Scholar 

  7. J. C. Simo, M. S. Rifai and D. D. Fox, On a stress resultant geometrically exact shell model. Part IV: Variable thickness shells with through-the-thickness stretching.Comp. Meth. Appl. Mech. Eng. 81, (1990) 91–126.

    Article  MATH  MathSciNet  Google Scholar 

  8. N. Büchter and E. Ramm, 3d-extension of nonlinear shell equations based on the enhanced assumed strain concept,Comp. Meth. Appl. Sci. (1992) 55–62.

  9. N. Büchter, E. Ramm and D. Roehl, Three-dimensional extension of nonlinear shell formulations based on the enhanced assumed strain concept.Int. J. Num. Meth. Eng. 37 (1994) 2551–2568.

    Article  MATH  Google Scholar 

  10. P. Steinmann, P. Betsch and E. Stein, FE plane stress analysis incorporating arbitrary 3d large strain constitutive models, submitted toEng. Comp. (1994).

  11. P. Betsch, F. Gruttmann and E. Stein, A 4-node finite shell element for the implementation of general hyperelastic 3D-elasticity at finite strains, to appear inComp. Meth. Appl. Mech. Eng. (1994).

  12. C. Sansour, A theory and finite element formulation of shells at finite deformations including thickness change: Circumventing the use of a rotation tensor.Arch. Appl. Mech. 65 (1995) 194–216.

    Article  MATH  Google Scholar 

  13. A. Kühhorn and H. Schoop, A nonlinear theory for sandwich shells including the wrinkling phenomenon.Arch. Appl. Mech. 62, (1992) 413–427.

    Article  MATH  Google Scholar 

  14. H. Parisch, A continuum-based shell theory for non-linear applications,Int. J. Num. Meth. Eng.,38 (1995) 1855–1883.

    Article  MATH  Google Scholar 

  15. H. Schoop, A simple nonlinear flat element for large displacement structures,Computers & Structures 32 (1989) 379–385.

    Article  MATH  Google Scholar 

  16. J. C. Simo and M. S. Rifai, A class of mixed assumed strain methods and the method of incompatible modes,Int. J. Num. Meth. Eng. 29 (1990) 1595–1638.

    Article  MATH  MathSciNet  Google Scholar 

  17. E. N. Dvorkin and K.-J. Bathe, A continuum mechanics based four-node shell element for general nonlinear analysis,Eng. Comput. 1 (1984) 77–88.

    Google Scholar 

  18. K. J. Bathe and E. N. Dvorkin, A four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation,Int. J. Num. Meth. Eng. 21 (1985) 367–383.

    Article  MATH  Google Scholar 

  19. N. Stander, A. Matzenmiller and E. Ramm, An assessment of assumed strain methods in finite rotation shell analysis,Eng. Comput. 6 (1989) 58–66.

    Google Scholar 

  20. H. Parisch, An investigation of a finite rotation four-node assumed strain shell element,Int. J. Num. Meth. Eng. 31, (1991) 127–150.

    Article  MATH  Google Scholar 

  21. P. Betsch and E. Stein, An assumed strain approach avoiding artificial thickness straining for a nonlinear 4-node shell element.Comm. Num. Meth. Eng. 11 (1995) 899–909.

    Article  MATH  Google Scholar 

  22. J. C. Simo and T. J. R. Hughes, On the variational foundations of assumed strain methods,J. Appl. Mech. 53 (1986) 51–54.

    Article  MATH  MathSciNet  Google Scholar 

  23. B. D. Reddy and J. C. Simo, Stability and convergence of a class of enhanced strain methods, preprint (1994).

  24. P. M. Naghdi, The theory of plates and shells, inHandbuch der Physik, Band VIa/2 (Springer, Berlin, 1972) 425–640.

    Google Scholar 

  25. E. L. Wilson, R. L. Taylor, W. P. Doherty and J. Ghaboussi, Incompatible Displacement Models, Numerical and Computer Models in Structural Mechanics, eds. S. J. Fenves, N. Perrone, A. R. Robinson and W. C. Schnobrich, New York: Academic Press (1973) 43–57.

    Google Scholar 

  26. J. C. Simo, F. Armero and R. L. Taylor, Improved versions of assumed enhanced strain tri-linear elements for 3D finite deformation problems,Comp. Meth. Appl. Mech. Eng. 110 (1993) 359–386.

    Article  MATH  MathSciNet  Google Scholar 

  27. A. E. Green and W. Zerna,Theoretical Elasticity (Oxford University Press, London, 1954).

    MATH  Google Scholar 

  28. T. J. R. Hughes,The Finite Element Method (Prentice Hall, Englewood Cliffs, NJ, 1987).

    MATH  Google Scholar 

  29. O. C. Zienkiewicz and R. L. Taylor,The Finite Element Method, Volume 1,Basic Formulation and Linear Problems (McGraw-Hill, London, 1989).

    Google Scholar 

  30. C. Miehe, Aspects of the formulation and finite element implementation of large strain isotropic elasticity,Int. J. Num. Meth. Eng. 37 (1994) 1981–2004.

    Article  MATH  MathSciNet  Google Scholar 

  31. J. C. Simo, R. L. Taylor and K. S. Pister, Variational and projection methods for the volume constraint in finite deformation elasto-plasticity,Comp. Meth. Appl. Mech. Eng. 51 (1985) 177–208.

    Article  MATH  MathSciNet  Google Scholar 

  32. R. H. MacNeal and R. L. Harder, A proposed standard set of problems to test finite element accuracy,Finite Elements in Analysis and Design 1 (1985) 3–20.

    Article  Google Scholar 

  33. J. C. Simo, D. D. Fox and M. S. Rifai, On a stress resultant geometrically exact shell model. Part II: The linear theory; Computational aspects,Comp. Meth. Appl. Mech. Eng. 73 (1989) 53–92

    Article  MATH  MathSciNet  Google Scholar 

  34. T. J. R. Hughes and E. Carnoy, Nonlinear finite element shell formulation accounting for large membrane strains,Comp. Meth. Appl. Mech. Eng. 39 (1983) 69–82.

    Article  MATH  Google Scholar 

  35. H. Parisch, Efficient non-linear finite element shell formulation involving large strains,Eng. Comput. 3, (1986) 121–128.

    Google Scholar 

  36. K. Schweizerhof and E. Ramm, Displacement dependent pressure loads in nonlinear finite element analyses,Comput. Struct. 18 (1984) 1099–1114.

    Article  MATH  Google Scholar 

  37. F. Gruttmann and R. L. Taylor, Theory and finite element formulation of rubberlike membrane shells using principal stretches,Int. J. Num. Meth. Eng. 35 (1992) 1111–1126.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Jerrold Marsden and Stephen Wiggins

This paper was solicited by the editors to be part of a volume dedicated to the memory of Juan Simo.

This paper is dedicated to the memory of Juan C. Simo

In honour of Professor Juan Simo who had significant collaboration with our institute and contributed important insights to our research work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Betsch, P., Stein, E. A nonlinear extensible 4-node shell element based on continuum theory and assumed strain interpolations. J Nonlinear Sci 6, 169–199 (1996). https://doi.org/10.1007/BF02434053

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02434053

Keywords

Navigation