Skip to main content
Log in

Pistil strategies controlling pollen tube growth

  • Minireview
  • Published:
Sexual Plant Reproduction Aims and scope Submit manuscript

Abstract

The progamic phase appears especially well suited for pollen-pistil interaction. During this phase the pistil supports pollen germination and tube growth, and provides an adequate environment, nutrition and directional cues. However, this support does not occur indiscriminantly and some mechanisms operating in the pistil constrain pollen tube growth. An active, regulated constraint is the self-incompatibility reaction, but moderate restrictions of pollen tube growth also occur in compatible matings. These moderate restrictions involve reduced support by the pistil and they operate through two main strategies; one is by decreasing the amount of support and the other is by varying the time at which this support is provided. In this minireview, we examine the evidence that is accumulating for both support and constraint of pollen tube growth by the pistil and discuss the benefits of this dual system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arbeloa A, Herrero M (1987) The significance of the obturator in the control of pollen tube entry into the ovary in peach (Prunus persica). Ann Bot 60:681–685

    Google Scholar 

  • Chasan R, Walbot V (1993) Mechanisms of plant reproduction: questions and approaches. Plant Cell 5:1139–1146

    Article  PubMed  Google Scholar 

  • Cheung AY (1995) Pollen-pistil interactions in compatible pollination. Proc Natl Acad Sci USA 92:3077–3080

    Article  PubMed  CAS  Google Scholar 

  • Cheung AY, Wang H, Wu Hm (1995) A floral transmitting tissue-specific glycoprotein attracts pollen tubes and stimulates their growth. Cell 82:383–393

    Article  PubMed  CAS  Google Scholar 

  • Cruzan MB (1986) Pollen tube distributions inNicotiana glauca: evidence for density dependent growth. Am J Bot 73:902–907

    Article  Google Scholar 

  • Cruzan MB (1993) Analysis of pollen-style interactions inPetunia hybrida; the determination of variance in male reproductive success. Sex Plant Reprod 6:275–281

    Article  Google Scholar 

  • Darwin C (1876) The effects of cross and self-fertilization in the vegetable kingdom. Murray, London

    Google Scholar 

  • Dickinson HG (1995) Dry stigmas, water and self-incompatibility inBrassica. Sex Plant Reprod 8:1–10

    Article  Google Scholar 

  • Dodds PN, Clarke AE, Newbigin E (1996) A molecular perspective on pollination in flowering plants. Cell 85:141–144

    Article  PubMed  CAS  Google Scholar 

  • Du H, Simpson RJ, Moritz RL, Clarke AE, Bacic A (1994) Isolation of the protein backbone of an arabinogalactan-protein from the styles ofNicotiana alata and characterization of a corresponding cDNA. Plant Cell 6:1643–1653

    Article  PubMed  CAS  Google Scholar 

  • Dumas C, Mogensen HL (1993) Gametes and fertilization: maize as a model system for experimental embryogenesis in flowering plants. Plant Cell 5: 1337–1348

    Article  PubMed  Google Scholar 

  • Franklin-Tong VE, Lawrence MJ, Franklin FC (1994) The molecular and cellular biology of gametophytic self-incompatibility inPapaver rhoeas. In: Williams EG, Clarke AE, Knox RB (eds) Genetic control of self-incompatibility and reproductive development in flowering plants. Kluwer, Dordrecht, pp 42–64

    Google Scholar 

  • Franssen-Verheijen AAW, Willemse MTM (1993) Micropylar exudate inGasteria (Aloaceae) and its possible function in pollen tube growth. Am J Bot 80:253–262

    Article  Google Scholar 

  • Ganeshaiah KN, Uma Shaanker R (1988) Regulation of seed number and female incitation of mate competition by a pH-dependent proteinaceous distribution of seed number in pods ofLeucaena leucocephala (Lam) de Wit. Oecologia 70:568–572

    Article  Google Scholar 

  • Goldman MHS, Pezzotti M, Seurinck J, Mariani C (1992) Developmental expression of tobacco pistil-specific genes encoding novel extensin-like proteins. Plant Cell 4:1041–1051

    Article  PubMed  CAS  Google Scholar 

  • Goldman MHS, Goldberg RB, Mariani C (1994) Female sterile tobacco plants are produced by stigma-specific cell ablation. EMBO J 13:2976–2984

    PubMed  CAS  Google Scholar 

  • González MV, Coque M, Herrero M (1995) Papillar integrity as an indicator of stigmatic receptivity in kiwifruit (Actinidia deliciosa). J Exp Bot 46(283):263–269

    Google Scholar 

  • Graaf B, Mariani, C (1996) Pistil-specific extensin-like proteins in tobacco: directly or indirectly involved in pollen-pistil interactions? In: Abstracts of the 14th International Congress of Sexual Plant Reproduction, Lorne, Australia, p 81

  • Herrero M (1983) Factors affecting fruit set in ‘Agua de Aranjuez’ pear. Acta Hortic 139:91–96

    Google Scholar 

  • Herrero M (1992a) From pollination to fertilization in fruit trees. Plant Growth Regul 11:27–32

    Article  Google Scholar 

  • Herrero M (1992b) Mechanisms in the pistil that regulate gametophyte population in peach (Prunus persica). In: Ottaviano E, Mulcahy DL, Sari-Gorla M, Mulcahy GB (eds) Angiosperm pollen and ovules. Springer, New York Berlin Heidelberg, pp 377–381

    Google Scholar 

  • Herrero M, Arbeloa A (1989) Influence of the pistil on pollen tube kinetics in peach (Prunus persica). Am J Bot 76:1441–1447

    Article  Google Scholar 

  • Herrero M, Dickinson HG (1979) Pollen-pistil incompatibility inPetunia hybrida: changes in the pistil following compatible and incompatible intraspecific crosses. J Cell Sci 36:1–18

    PubMed  CAS  Google Scholar 

  • Herrero M, Dickinson HG (1980) Ultrastructural and physiological differences between buds and mature flowers ofPetunia hybrida prior to and following pollination. Planta 148:138–145

    Article  Google Scholar 

  • Herrero M, Dickinson HG (1981) Pollen tube development inPetunia hybrida following compatible and incompatible intraspecific matings. J Cell Sci 47:365–383

    PubMed  CAS  Google Scholar 

  • Heslop-Harrison J (1983) Self-incompatibility: phenomenology and physiology. Proc R Soc Lond B Biol Sci 218:371–395

    Article  Google Scholar 

  • Heslop-Harrison J, Heslop-Harrison Y (1985) Surfaces and secretions in the pollen-stigma interaction: a brief review. J Cell Sci 2:287–300

    CAS  Google Scholar 

  • Hormaza JI, Herrero M (1994) Gametophytic competition and selection. In: Williams EG, Clarke AE, Knox RB (eds) Genetic control of self-incompatibility and reproductive development in flowering plants. Kluwer, Dordrecht, pp 372–400

    Google Scholar 

  • Hormaza JI, Herrero M (1996) Dynamics of pollen tube growth under different competition regimes. Sex Plant Reprod 9:153–160

    Google Scholar 

  • Hülskamp M, Schneitz K, Pruitt RE (1995) Genetic evidence for a long-range activity that directs pollen tube guidance inArabidopsis. Plant Cell 7:57–64

    Article  PubMed  Google Scholar 

  • Kandasamy MK, Thorsness MK, Rundle SJ, Goldberg ML, Nasrallah JB, Nasrallah ME (1993) Ablation of papillar cell function inBrassica flowers results in the loss of stigma receptivity to pollination. Plant Cell 5: 263–275

    Article  PubMed  CAS  Google Scholar 

  • Kandasamy MK, Nasrallah JB, Nasrallah ME (1994) Pollen-pistil interactions and developmental regulation of pollen tube growth inArabidopsis. Development 120:3405–3418

    CAS  Google Scholar 

  • Knox, RB (1984) Pollen-pistil interactions. In: Linskens HF, Heslop-Harrison J (eds) Cellular interactions. (Encyclopedia of plant physiology, new series 17). Springer, New York Berlin Heidelberg, pp 508–608

    Google Scholar 

  • Kroh M, Labarca L, Loewus F (1971) Use of pistil exudate for pollen tube wall byosynthesis inLilium longiflorum. In: Heslop-Harrison J (ed) Pollen development and physiology, Butterworths, London, pp 273–278

    Google Scholar 

  • Labarca C, Loewus F (1973) Nutritional role of pistil exudate in pollen tube wall formation inLilium longiflorum. II. Production and utilization of exudate from stigma and stylar canal. Plant Physiol 52:87–92

    Article  PubMed  CAS  Google Scholar 

  • Lind JL, Bacic A, Clarke AE, Anderson MA (1994) A style-specific hydroxyproline-rich glycoprotein has properties of both extensin and arabinogalactan proteins. Plant J 6:491–502

    Article  PubMed  CAS  Google Scholar 

  • Lind JL, Böning I, Clarke AE, Anderson MA (1996) A style-specific 120-kDa glycoprotein enters pollen tubes ofNicotiana alata in vivo. Sex Plant Reprod 9:75–86

    Article  Google Scholar 

  • Linskens HF (1986) Recognition during the progamic phase. In: Cresti M, Dallai R (eds) Biology of reproduction and cell motility in plants and animals. University of Siena, Italy, pp 21–31

    Google Scholar 

  • Marshall DL, Folsom MW (1991) Mate choice in plants: an anatomical to population perspective. Annu Rev Ecol Syst 22:37–63

    Article  Google Scholar 

  • Martinez-Pallé E, Herrero M (1995) The ponticulus: a structure bridging pollen tube access to the ovule inPistacia vera. Sex Plant Reprod 8:217–222

    Google Scholar 

  • Mascarenhas JP (1978) Sexual chemotaxis and chemotropism in plants. In: Hazelbaner GL (ed) Taxis and behavior elementary sensory systems in biology. (Receptors and recognition, series B vol 5) Chapman and Hall, London, pp 171–203

    Google Scholar 

  • Mascarenhas JP (1993) Molecular mechanism of pollen tube growth and differentiation. Plant Cell 5:1303–1314

    Article  PubMed  CAS  Google Scholar 

  • Matton DP, Nass N, Clarke AE, Newbigin E (1994) Self-incompatibility — how plants avoid illegitimate offspring. Proc Natl Acad Sci USA 91:1992–1997

    Article  PubMed  CAS  Google Scholar 

  • Modlibowska I (1942) Bimodality of crowded pollen tubes inPrimula obsonica. J Hered 35:187–190

    Google Scholar 

  • Mulcahy DL (1979) The rise of angiosperms: a genecological factor. Science 206:20–23

    PubMed  Google Scholar 

  • Murdy WH, Carter MEB (1987) Regulation of the timing of pollen germination by the pistil inTalinum mengesii (Portulacaceae). Am J Bot 74:1888–1892

    Article  Google Scholar 

  • Nasrallah JB, Stein JC, Kandasamy MK, Nasrallah ME (1994) Signalling the arrest of pollen tube development in self-incompatible plants. Science 266: 1505–1508

    CAS  PubMed  Google Scholar 

  • Preuss D, Lemieux B, Yen G, Davis RW (1993) A conditional sterile mutation eliminates surface components fromArabidopsis pollen and disrupts cell signalling during fertilization. Genes Dev 7:974–985

    PubMed  CAS  Google Scholar 

  • Russell SD (1993) The egg cell: development and role in fertilization and early embryogenesis. Plant Cell 5:1349–1359

    Article  PubMed  Google Scholar 

  • Sage TL, Bertin RI, Williams EG (1994) Ovarian and other late-acting self-incompatibility systems. In: Williams EG, Clarke AE, Knox RB (eds) Genetic control of self-incompatibility and reproductive development in flowering plants. Kluwer, Dordrecht, pp 116–140

    Google Scholar 

  • Sanders LC, Lord EM (1989) Directed movement of latex particles in the gynoecia of three species of flowering plants. Science 243:1606–1608

    PubMed  Google Scholar 

  • Snow AA, Spira TP (1991) Pollen vigour and the potential for sexual selection in plants. Nature 352:796–797

    Article  Google Scholar 

  • Thorsness MK, Kandasamy MK, Nasrallah ME, Nasrallah JB (1993) Genetic ablation of floral cells inArabidopsis. Plant Cell 5:253–261

    Article  PubMed  CAS  Google Scholar 

  • Tilton VR, Horner HT (1980) Stigma, style, and obturator ofOrnithogalum caudatum (Liliaceae) and their function in the reproductive process. Am J Bot 67:1113–1131

    Article  Google Scholar 

  • Tilton VR, Wilcox LW, Palmer RG, Albertsen MC (1984) Stigma, style, and obturator of soybean,Glycine max (L.) Merr. (Leguminosae) and their function in the reproductive process. Am J Bot 71:676–686

    Article  Google Scholar 

  • Wang H, Wu HM, Cheung AY (1993) Developmental and pollination regulation of the accumulation and glycosilation of a transmitting tissue-specific proline-rich glycoprotein. Plant Cell 5:1639–1650

    Article  PubMed  CAS  Google Scholar 

  • Willson MF, Burley N (1983) Mate choice in plants: tactics, mechanisms and consequences. Monographs of Population Biology, no 19, Princeton University Press, Princeton, NJ

    Google Scholar 

  • Wu Hm, Zou JT, May B, Gu Q, Cheung AY (1993) A tobacco gene family for flower cell wall proteins with a proline-rich domain and a cysteine-rich domain. Proc Natl Acad Sci USA 90:6829–6833

    Article  PubMed  CAS  Google Scholar 

  • Wu Hm, Wang H, Cheung AY (1995) A pollen tube growth stimulatory glycoprotein is deglycosilated by pollen tubes and displays a glycosilation gradient in the flower. Cell 82:393–403

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Herrero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herrero, M., Hormaza, J.I. Pistil strategies controlling pollen tube growth. Sexual Plant Reprod 9, 343–347 (1996). https://doi.org/10.1007/BF02441953

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02441953

Key words

Navigation