Skip to main content
Log in

The evolution of self-incompatibility: a molecular voyeur's perspective

  • Minireview
  • Published:
Sexual Plant Reproduction Aims and scope Submit manuscript

Abstract

This review summarises current understanding of the evolution of self-incompatibility inferred from DNA sequence analysis. Self-incompatibility in many plant families is controlled by a single, highly polymorphicS-locus which, in the Solanaceae, encodes an allelic series of stylar ribonucleases known as the S-RNases. PCR approaches are a convenient way to examine the diversity of S-RNase sequences within and between wild populations of a self-incompatible species and provide a unique view into the species' current and historic population structure. Similar molecular appoaches have also been used to show that S-RNases are involved in self-incompatibility in families other than the Solanaceae. A model for the evolution of ribonuclease-based self-incompatibility systems is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ai Y, Kron E, Kao T-h (1991)S-alleles are retained and expressed in a self-compatible cultivar ofPetunia hybrida. Mol Gen Genet 230:353–358

    Article  PubMed  CAS  Google Scholar 

  • Atwood SS (1944) Oppositional alleles in natural populations ofTrifolium repens. Genetics 29:428–435

    Google Scholar 

  • Bateman AJ (1952) Self-incompatibility systems in angiosperms. Heredity 6:285–310

    Google Scholar 

  • Clark AG (1993) Evolutionary inferences from molecular characterization of self-incompatibility alleles. In: Takahata N, Clark AG (eds) Mechanisms of molecular evolution. Sinauer, Sunderland, Mass, pp 79–108

    Google Scholar 

  • Dodds PN, Clarke AE, Newbigin E (1996) A molecular perspective on pollination in flowering plants. Cell 85:141–144

    Article  PubMed  CAS  Google Scholar 

  • Emerson S (1939) A preliminary survey of theOenothera organensis population. Genetics 24:524–537

    Google Scholar 

  • Gillissen B, Bergemann J, Sandmann C, Schroeer B, Bolker M, Kahman R (1992) A two-component regulatory system for self/non-self recognition inUstilago maydis. Cell 68:647–657

    Article  PubMed  CAS  Google Scholar 

  • Golz JF, Clarke AE, Newbigin E (1995) Self-incompatibility in flowering plants. Curr Opin Genet Dev 5:640–645

    Article  PubMed  CAS  Google Scholar 

  • Green PJ (1994) The ribonucleases of higher plants. Annu Rev Plant Physiol 45:421–445

    Article  CAS  Google Scholar 

  • Ioerger T, Clark AG, Kao T-H (1990) Polymorphism at the self-incompatibility locus in Solanaceae predates speciation. Proc Natl Acad Sci USA 87:9732–9735

    Article  PubMed  CAS  Google Scholar 

  • Lawrence MJ, Lane MD, O'Donnell S, Franklin-Tong VE (1993) The population genetics of self-incompatibility polymorphisms inPapaver rhoeas. V. Cross-classification of theS-alleles of samples from three natural populations. Heredity 71: 581–590

    Google Scholar 

  • Levin DA (1993)S-gene polymorphism inPhox drummondii. Heredity 71:193–198

    CAS  Google Scholar 

  • Levin DA, Ritter K, Ellstrand NC (1979) Protein polymorphism in the narrow endemicOenothera organensis. Evolution 33: 534–542

    Article  CAS  Google Scholar 

  • Lewis D (1949) Structure of the incompatibility gene. III. Types of spontaneous and induced mutations. Heredity 5:399–414

    Google Scholar 

  • Lewis D, Crowe LK (1958) Unilateral incompatibility in flowering plants. Heredity 12:233–256

    Google Scholar 

  • McClure BA, Haring V, Ebert PR, Anderson MA, Simpson RJ, Sakiyama F, Clarke AE (1989) Style self-incompatibility gene products ofNicotiana alata are ribonucleases. Nature 342: 955–957

    Article  PubMed  CAS  Google Scholar 

  • Nasrallah JB, Stein JC, Kandasamy MK, Nasrallah ME (1994) Signalling the arrest of pollen tube development in self-incompatible plants. Science 266:1505–1508

    CAS  Google Scholar 

  • Potts WK, Wakeland EK (1993) Evolution of MHC genetic diversity: a tale of incest, pestilence and sexual preference. Trends Genet 9:408–412

    Article  PubMed  CAS  Google Scholar 

  • Reinartz JA, Les DH (1994) Bottleneck-induced dissolution of self-incompatibility and breeding system consequences inAster furcatus (Asteraceae). Am J Bot 81:446–455

    Article  Google Scholar 

  • Richman AD, Kao T-H, Schaeffer SW, Uyenoyama MK (1995)S-allele sequence diversity in natural populations ofSolanum carolinense (Horsenettle). Heredity 75:405–415

    PubMed  CAS  Google Scholar 

  • Richman AD, Uyenoyama MK, Kohn JR (1996a)S-allele diversity in a natural population ofPhysalis crassifolia (Solanaceae) (ground cherry) assessed by RT-PCR. Heredity 76:497–505

    PubMed  CAS  Google Scholar 

  • Richman AD, Uyenoyama MK, Kohn JR (1996b) Allelic diversity and gene:genealogy at the self-incompatibility locus in the Solanaceae. Science 273:1212–1216

    PubMed  CAS  Google Scholar 

  • Sassa H, Nishio T, Kowyama Y, Hirano H, Koba T, Ikehashi H (1996) Self-incompatibility (S) alleles of the Rosaceae encode members of a distinct class of the T2/S ribonuclease superfamily. Mol Gen Genet 250:547–557

    PubMed  CAS  Google Scholar 

  • Takahata N (1990) A simple genealogical structure of strongly balanced allelic lines and trans-species evolution of polymorphism. Proc Natl Acad Sci USA 87:2419–2423

    Article  PubMed  CAS  Google Scholar 

  • Tsai D-S, Lee HS, Post LC, Kreiling KM, Kao T-H (1992) Sequence of an S-protein ofLycopersicon peruvianum and comparison with other solanaceous S-proteins. Sex Plant Reprod 5:256–263

    Article  Google Scholar 

  • Uyenoyama MK (1991) On the evolution of genetic incompatibility systems. VI. A three-locus modifier model for the origin of gametophytic self-incompatibility. Genetics 128:453–469

    PubMed  CAS  Google Scholar 

  • Williams RD, Williams W (1947) Genetics of red clover (Trifolium pratense L.) compatibility. III. The frequency of incompatibilityS-alleles in two non-pedigree populations of red clover. J Genet 48:67–79

    Google Scholar 

  • Wright S (1939) The distribution of self-sterility alleles in populations. Genetics 24:538–552

    Google Scholar 

  • Xue Y, Carpenter R, Dickinson HG, Coen ES (1996) Origin of allelic diversity inAntirrhinum S-locus RNases. Plant Cell 8: 805–814

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama S, Nei M (1979) Population dynamics of sex-determining alleles in honey bees and self-incompatibility alleles in plants. Genetics 91:609–626

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Newbigin, E. The evolution of self-incompatibility: a molecular voyeur's perspective. Sexual Plant Reprod 9, 357–361 (1996). https://doi.org/10.1007/BF02441956

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02441956

Key words

Navigation