Skip to main content
Log in

Effect of radial position on volume measurements using the conductance catheter

  • Physiological Measurement
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

A finite-difference computer model has been used to determine the potential distributions arising from a dipole current source aligned parallel to the axis of bounding cylinders. The radial position of this source had large and nonlinear influence on the potentials along the dipole axis. The accuracy of the computer simulation was established from comparison with an analytic solution of a simple geometry. Measurements using a conductance catheter in saline-filled cylinders also demonstrated the dependence of the conductance on the radial position. The dependence of the potential distribution on the radial position of the dipole places limits on the ultimate accuracy of the conductance catheter technique when used for the measurement of ventricular volume. Radial movement of the catheter within the ventricular cavity, resulting in changes in the potential distribution, could explain some artefacts that appear on volume recordings from the conductance catheter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baan, J. Jong, T. T. A., Kerkhof, P. L. M., Moene, R. J., van Dijk, A. D., van der Velde, E. T. andKoops, J. (1981) Continuous stroke volume and cardiac output from intraventricular dimensions obtained with impedance catheter.Cardiovasc. Res.,15, 328–334.

    Article  Google Scholar 

  • Baan, J., van der Velde, E. T., de Bruin, H. G., Smeenk, G. J., Knoops, J., van Dijk, A. D., Temmerman, D., Senden, J. andBuis, B. (1984) Continuous measurement of left ventricular volume of animals and humans by conductance catheter.Circ.,70, 812–822.

    Google Scholar 

  • Burkhoff, D., van der Velde, E., Kass, D., Baan, J., Maughan, W. L. andSagawa, K. (1985) Accuracy of measurement by conductance catheter in isolated, ejecting canine hearts.—Ibid.,72, 440–447.

    Google Scholar 

  • Carré, B. E. (1961) The determination of the optimum accelerating factor for successive over-relaxation.Comput. J.,4, 73–78.

    Article  MATH  Google Scholar 

  • Heringa, A., Stegeman, D. F., Uijen, G. J. H. andde Weerd, J. P. C. (1982) Solution methods of electrical field problems in physiology.IEEE Trans.,BME-29, 34–42.

    Google Scholar 

  • Hornbeck, R. W. (1975)Numerical methods. Quantum Publishers, New York.

    Google Scholar 

  • McKay, R. G., Spears, J. R., Aroesty, J. M., Baim, D. S., Royal, H. D., Heller, G. V., Lincoln, W., Salo, R. W., Braunwald, E. andGrossman, W. (1984) Instantaneous measurement of left and right ventricular volume and pressure-volume realtionships with an impedance catheter.Circ.,69, 703–710.

    Google Scholar 

  • Mur, G. andBaan, J. (1984) Computation of the input impedances of a catheter for cardiac volumetry.IEEE Trans.,BME-31, 448–453.

    Google Scholar 

  • Patterson, R. P. (1985) Sources of the thoracic cardiogenic electrical impedance signal as determined by a model.Med. & Biol. Eng. & Comput.,23, 411–417.

    MathSciNet  Google Scholar 

  • Rankin, J. S., McHale, P. A., Arentzen, C. E., Ling, D., Greenfield, J. C. andAnderson, R. W. (1976) The three-dimensional dynamic geometry of the left ventricle in the conscious dog.Circ. Res.,39, 304–313.

    Google Scholar 

  • Rush, S., Abildskov, J. A. andMcFee, R. (1963) Resistivities of body tissues at low frequencies.—Ibid.,12, 40–50.

    Google Scholar 

  • Salo, R. W. andWallner, T. G. (1984) Computer modeling of intracardiac impedance plethysmography. Abstracts of IEEE/NSF Symposium on Biosensors, Los Angeles, California, 29–31.

  • Salo, R. W., Wallner, T. G. andPederson, B. D. (1986) Measurement of ventricular volume by intracardiac impedance: theoretical and empirical approaches.IEEE Trans.,BME-33, 189–195.

    Google Scholar 

  • Spinelli, J. C. andValentinuzzi, M. E. (1986) Conductivity and geometrical factors affecting volume measurements with an impedancimetric catheter.Med. & Biol. Eng. & Comput.,24, 460–464.

    Article  Google Scholar 

  • van Oosterom, A., de Boer, R. W. andvan Dam, R. Th. (1979) Intramural resistivity of cardiac tissue.—Ibid.,17, 337–343.

    Article  Google Scholar 

  • Witwer, G. W., Trezek, G. J. andJewett, D. J. (1972) The effect of media inhomogeneities upon intracranial electrical fields.IEEE Trans.,BME-5, 352–362.

    Google Scholar 

  • Woodard, J. C., Bertram, C. D. andGow, B. S. (1987) Right ventricular volumetry by catheter measurement of conductance.Pace,10, 862–870.

    Google Scholar 

  • Young, D. (1954) Iterative methods for solving partial differential equations of elliptic type.Trans. Am. Math. Soc.,76, 92–111.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woodard, J.C., Bertram, C.D. & Gow, B.S. Effect of radial position on volume measurements using the conductance catheter. Med. Biol. Eng. Comput. 27, 25–32 (1989). https://doi.org/10.1007/BF02442166

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02442166

Keywords

Navigation