Skip to main content
Log in

The use of protein characteristics to assess the retrievability of ancient DNA from ancient bones

  • Published:
International Journal of Anthropology

Abstract

The ability to retrieve DNA from ancient specimens has been one of the greatest achievements of the past decade, and has opened a totally new field of research with applications in seemingly distant domains such as archeobotany, the molecular phylogeny of extinct genomes, human paleopathology and the genetic of ancient human populations. However, extraction of ancient DNA has often a very low rate of success, prompting researchers to develop screening methods for the selection of promising specimens. With this goal in mind, we studied the amino acid content of nine human bones of ancient origin. We demonstrate that a single HPLC chromatogram is indicative of the integrity of ancient bone proteins. Among five specimens containing amplifiable DNA, four exhibited a protein content similar to that of contemporary bone protein content. Three of the four specimens, from which we were unable to extract any amplifiable DNA, had an amino acid content strikingly different from that of contem-porary bone. A non-parametric statistical test, Kendall's tau, was used to show that protein content and PCR products, are probably correlated (at a 95% confidence level). In addition, the D/L Asp and D/L Glu racemization ratios obtained are indicative of the presence of ancient organic compounds. We propose that protein analysis should be systematically performed in studies where there are many samples in order to select the specimens that are most likely to contain retrievable ancient DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Higuchi, R., B. Bowman, M. Freiberger, O. Ryder, and A.C. Wilson. (1984) DNA sequences from a quagga, an extinct member of the horse family, Nature, 312, 282–284.

    Article  Google Scholar 

  2. Pääbo, S. (1985) Molecular cloning of ancient Egyptian mummy DNA, Nature, 314, 644–645.

    Article  Google Scholar 

  3. Saiki, R.K., S. Scharf, F. Faloona, K.B. Mullis, G.T. Horn, H.A. Erliich, and A. Arnheim. (1985) Enzymatic amplification of b-globulin genomic sequences and restriction site analysis for diagnostic of sickle cell anemia, Science, 230, 1350–1354.

    Google Scholar 

  4. Thomas, R.H., W. Schaffner, A.C. Wilson, and S. Pääbo (1989) DNA phylogeny of the extinct marsupial wolf, Nature 340, 465–467.

    Article  Google Scholar 

  5. Thomas, W.K., S. Pääbo, F.X. Villablanca, and A.C. Wilson (1990) Spacial and temporal continuity of kangaroo rat populations shown by sequencing mitochondrial DNA from museum specimens, J Mol Evol. 3, 101–112.

    Article  Google Scholar 

  6. Lawlor, D.A., C.D. Dickel, W.W. Hauswirth, and P. Parham (1991) Ancient HLA genes from 7,500-year-old archaeological remains, Nature, 349, 786–788.

    Article  Google Scholar 

  7. Hagelberg, E., S. Quevado, D. Turbon and J.B. Clegg (1994) DNA from ancient Easter islanders, Nature, 369, 25–26.

    Article  Google Scholar 

  8. Stone, A.C. and M. Stoneking (1993) Ancient DNA from a pre-colombian Amerindian population, Am. J. Phys. Anthropol, 92, 463–471.

    Article  Google Scholar 

  9. Horaï, S., R. Kondo, K. Murayama, S. Hayashi, H. Koike, and N. Nakaï (1991) Phylogenetic affiliation of ancient and contemporary humans inferred from mitochondrial DNA, Phil. Trans. R. Soc. Lond B, 333, 409–417.

    Google Scholar 

  10. Rogan, P.K., and J.J. Salvo (1990) Study of nucleic acids isolated from ancient remains, Yearbook Phys. Anthropol, 33, 195–214.

    Article  Google Scholar 

  11. Hagelberg, E. (1994) Ancient DNA studies, Evolutionary Anthropology, 2, 199–207.

    Article  Google Scholar 

  12. Audic, S. and E. Béraud-Colomb (1997) Ancient DNA is thirteen years old, Nature Biotechnology, 15, 855–858.

    Article  Google Scholar 

  13. Béraud-Colomb, E., R. Roubin, J. Martin, N. Maroc, A. Gardeisen, G. Trabuchet, and M. Goossens (1995) Human b-globin gene polymorphisms characterized in DNA extracted from ancient bones 12,000 years old, Am. J. Hum. Genet., 57, 1267–1274.

    Google Scholar 

  14. Pääbo, S., and A.C. Wilson. (1991) Miocene DNA sequences a dream come true? Molecular Evolution, 1, 45–46.

    Google Scholar 

  15. Lindahl, T. (1993) Instability and decay of the primary structure of DNA, Nature, 362, 709–715.

    Article  Google Scholar 

  16. Lindahl, T. (1993) Recovery of antediluvian DNA, Nature, 365, 700

    Article  Google Scholar 

  17. Hedges, S. B. and M. H. Schweitzer (1995) Detecting Dinosaur DNA, Science, 268, 1191.

    Google Scholar 

  18. Richards, M.B., B.C. Sykes and R.E.M. Hedges (1995) Authenticating DNA extracted from ancient skeletal remains, Journal of Archaeological Science, 22, 291–299.

    Article  Google Scholar 

  19. Béraud-Colomb, E., Roubin, R., Martin, J., Maroc, N., Gardeisen, A., Trabuchet, G. and Goossens, M. (1997) Letter to the Editor. Am. J. Hum. Genet., 60, 1002.

    Google Scholar 

  20. Poinar, H.N., M. Höss, J.L. Bada and S. Pääbo. (1996) Amino acid racemization and the preservation of ancient DNA. Science, 272, 864–866.

    Google Scholar 

  21. Höss, M., P. Jaruga, T.H. Zastawny, M. Dizdaroglu and S. Pääbo (1996) DNA damage and DNA sequence retrieval from ancient tissues, Nucleic Acids Research, 24, 1304–1307.

    Article  Google Scholar 

  22. El Mansouri, M., A. El Fouikar and B St Martin. (1996) Correlation between14C ages and aspartic acid racemization at the upper Paleolithic site of the abri Pataud (Dordogne, France), Journal of Archaeological Science, 23, 803–809.

    Article  Google Scholar 

  23. Triffit, J.T. (1980) Fundamental and Clinical Bone Physiology. M.R. Urist Ed., J.B. Lippincott and Co, pp. 45–82.

  24. Bada, J.L. (1970) Marine sediments: dating by racemization of amino acids, Science, 170, 730–732.

    Google Scholar 

  25. Wehmiller, J. F., and P.E. Hare. (1971) Racemization of amino acid in marine sediments. Science, 173, 907–911.

    Google Scholar 

  26. Bada, J.L., E. Mitchell, and B. Kemper. (1983) Aspartic acid racemization in narwhal teeth. Nature, 303, 418–420.

    Article  Google Scholar 

  27. Williams, K.M. and G.G. Smith. (1977) A critical evaluation of the application of amino acid racemization to geochronology and geochemistry, Origins of Life, 8, 91–144.

    Article  Google Scholar 

  28. Matsu'ura, S., and N. Ueta. (1980) Fraction dependent variation of aspartic acid racemization age of fossil bone, Nature, 286, 883–884.

    Article  Google Scholar 

  29. Press, W.H., S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery (1992) Numerical Recipes in C. The art of scientific computing, Cambridge University press, Cambridge, pp. 642–645.

    Google Scholar 

  30. Krings, M., A. Stone, R.W. Schmitz, H. Krainitzki, M. Stoneking and S. Pääbo (1997) Neandertal DNA sequences and the origin of modern humans, Cell, 90, 19–30.

    Article  Google Scholar 

  31. Vandermeersch, B. (1981) Les hommes fossiles de Quafzeh (Israel) Paris: Editions CNRS.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Audic, S., El Masouri, M. & Béraud-Colomb, E. The use of protein characteristics to assess the retrievability of ancient DNA from ancient bones. Int. J. Anthropol. 17, 17–26 (2002). https://doi.org/10.1007/BF02447901

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02447901

Keywords

Navigation