Skip to main content
Log in

The structure of the distortion free-energy density in nematics: Second-order elasticity and surface terms

  • Published:
Il Nuovo Cimento D

Summary

By means of a phenomenological approach, we demonstrate that the mixed splay-bend elastic constantK 13 in the free energy density of nematic liquid crystals must be considered zero, unless the bulk contributions of the squares of the distortion second-order derivatives are taken into account, together with the squares of the first-order derivatives times the second-order derivatives, and with the fourth powers of the first-order derivatives. Such contributions just reduce to one in the presence of—and close to—a threshold. Furthermore, the saddle-splayK 24-term instead is shown always to play an essential role, as the bulk first-order elasticity, in determining the distortion free energy of nematics with weak anchoring subjected to spatial deformations. Finally, the new surfacelike elastic constants are shown to have a nilpotent character: thus they behave as well asK 24 from the point of view of the variational calculus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. W. Oseen:Ark. Mat. Astron. Fys. A,19, 1 (1925);Trans. Faraday Soc.,29, 883 (1933);F. C. Frank:Discuss. Faraday Soc.,25, 19 (1958);E. B. Priestley, P. J. Wojtowicz andPing Shen:Introduction to Liquid Crystals, (Plenum Press, New York, N.Y., 1974). p. 143, and references therein;P. G. de Gennes:The Physics of Liquid Crystals (Clarendon Press, Oxford, 1974), p. 59, and references therein;S. Chandrasekhar:Liquid Crystals (Cambridge University Press, Cambridge, 1977), p. 98, and references therein.

    Google Scholar 

  2. J. Nehring andA. Saupe:J. Chem. Phys.,54, 337 (1971).

    Article  Google Scholar 

  3. J. Nehring andA. Saupe:J. Chem. Phys.,56, 5527 (1972).

    Article  Google Scholar 

  4. E. Dubois-Violette andO. Parodi:J. Phys. (Paris) Colloq.,30, C4–57 (1969).

    Google Scholar 

  5. D. W. Berreman andS. Meiboom:Phys. Rev. A.,30, 1955 (1984).

    Article  ADS  Google Scholar 

  6. The NLC directorn (undistinguishable from −n) is the unit vector parallel to the local average orientation of the molecules. A NLC-cell has strong anchoring if the surface director is independent of the bulk distortion; in the opposite case (weak anchoring), then-orientation at the surface depends both on the bulk distortion and on the surface treatment.

  7. C. Oldano andG. Barbero:J. Phys. (Paris) Lett.,46, L-451 (1985);Phys. Lett. A,110, 213 (1985).

    Google Scholar 

  8. G. Barbero andC. Oldano:Nuovo Cimento D,6, 479 (1985).

    Google Scholar 

  9. A. Strigazzi:Mol. Cryst. Liq. Cryst.,152, 435 (1987).

    Google Scholar 

  10. W. H. de Jue:Physical Properties of Liquid Crystalline Materials (Gordon and Breach, New York, N.Y., 1980).

    Google Scholar 

  11. H. R. Brandt andH. Pleiner:J. Phys. (Paris),45, 563 (1984);H. Pleiner:Liq. Cryst.,3, 249 (1987);H. Yokoyama;Mol. Cryst. Liq. Cryst.,165, 265 (1988).

    Google Scholar 

  12. G. Vertogen, S. D. P. Flapper andC. Dullemond:J. Chem. Phys.,76, 616 (1982).

    Article  ADS  Google Scholar 

  13. G. Vertogen:Physica A,117, 227 (1983).

    Article  ADS  Google Scholar 

  14. E. Govers andG. Vertogen:Phys. Rev. A,30, 1998 (1984).

    Article  ADS  Google Scholar 

  15. For instance, the assumptionA ijkl =A klij is not restrictive, since the possible antisymmetric part of the tensorA ijkl with respect to the double change (ij, kl.) gives no contribution tof.

  16. G. Barbero, I. Dozov, J. F. Palierne andG. Durand:Phys. Rev. Lett.,56, 2056 (1986).

    Article  ADS  Google Scholar 

  17. G. Vertogen:Z. Naturforsch. A,38, 1273 (1983).

    MATH  MathSciNet  Google Scholar 

  18. E. Govers andG. Vertogen:Physica A,141, 625 (1987).

    Article  ADS  Google Scholar 

  19. A. J. M. Spencer andR. S. Rivlin:Arch. Ration. Mech. Anal.,11, 45 (1961).

    MathSciNet  Google Scholar 

  20. S. Meiboom, J. F. Sethna, P. W. Anderson andW. F. Brinkman:Phys. Rev. Lett.,46, 1216 (1981).

    Article  ADS  Google Scholar 

  21. J. P. Sethna, D. C. Wright andN. D. Mermin:Phys. Rev. Lett.,51, 467 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  22. S. Meiboom, M. Sammon andW. F. Brinkman:Phys. Rev. A,27, 438 (1983).

    Article  ADS  Google Scholar 

  23. L. Longa, D. Monselesan andH. R. Trebin:Liq. Cryst.,2, 769 (1987).

    Google Scholar 

  24. Of course, the flexoelectricity should be taken into account also in the frame of the ordinary elastic theory. But the flexoelectric contributions renormalize the elastic anisotropy (G. Barbero andM. Meuti:J. Phys. (Paris),47, 341 (1986); therefore, they vanish close to a threshold, as well as the square of the distortion angle. According to the generalized elastic theory, new flexoelectric contributions of the same order of the new elastic constants would appear, getting to further monstrous complication. Fortunately, all the more reason the new flexoelectric contributions can be shown to vanish close to a distortion threshold.

  25. G. Barbero andA. Strigazzi:Fizika,13, 85 (1981).

    Google Scholar 

  26. A. Strigazzi:Mol. Cryst. Liq. Cryst.,179, 427 (1990).

    Google Scholar 

  27. G. Barbero andA. Strigazzi:Liq. Cryst.,5, 693 (1989).

    Google Scholar 

  28. R. S. Schechter:The Variational Methods in Engineering (McGraw-Hill, New York, N.Y., 1967).

    Google Scholar 

  29. A. Rapini andM. Papoular:J. Phys. (Paris) Colloq.,30 C4–54 (1969);A. Strigazzi:J. Phys. (Paris),46, 1507 (1985) and references therein;G. Barbero andG. Durand:J. Phys. (Paris),47, 2129 (1986) and references therein.:J. T. Gleeson andP. Palffy-Muhoray:Determination of the surface anchoring potential of a nematic in contact with a substrate; preprint.

    Google Scholar 

  30. H. P. Hinov:Mol. Cryst. Liq. Cryst.,148, 197 (1987).

    Google Scholar 

  31. N. V. Madhusudana:Experimental determination of the elastic constant K 13 of a NLC, presented at the2nd International Topical Meeting on Optics of Liquid Crystals, Torino, 1988;N. V. Madhusudana andR. Pratibha:Mol. Cryst. Liq. Cryst.,179, 207 (1990).

  32. H. Mada:Mol. Cryst. Liq. Cryst.,51, 43 (1979);Appl. Phys. Lett.,39, 701 (1981).

    Google Scholar 

  33. J. L. Ericksen:Arch. Ration. Mech. Anal.,10, 14 (1962).

    Article  MathSciNet  Google Scholar 

  34. G. Barbero andC. Oldano:Mol. Cryst. Liq. Cryst.,170, 99 (1989).

    Google Scholar 

  35. Ping Sheng:Phys. Rev. A,26, 1610 (1982).

    Article  ADS  Google Scholar 

  36. I. P. Nicholson:J. Phys. (Paris),48, 131 (1987).

    Google Scholar 

  37. H. Hsiung, Th. Rasing andY. R. Shen:Phys. Rev. Lett.,24, 3065 (1986).

    Article  ADS  Google Scholar 

  38. M. Kléman:J. Phys. (Paris),46, 1193 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbero, G., Sparavigna, A. & Strigazzi, A. The structure of the distortion free-energy density in nematics: Second-order elasticity and surface terms. Il Nuovo Cimento D 12, 1259–1272 (1990). https://doi.org/10.1007/BF02450392

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02450392

PACS 61.30

PACS 68.10.Cr

Navigation