Skip to main content
Log in

Studies on the growth ofThiobacillus ferrooxidans

III. Influence of uranium, other metal ions and 2:4-dinitrophenol on ferrous iron oxidation and carbon dioxide fixation by cell suspensions

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Summary

Suspensions ofThiobacillus ferrooxidans in Warburg flasks oxidized ferrous iron and coupled14CO2 fixation to the oxidation. The sulphates of zinc, cobalt, copper, nickel or uranium (0.1–1.0 M) depressed the rate of Fe2+ oxidation: nickel and uranyl ions were the most inhibitory. Uranyl, copper and nickel ions inhibited iron-dependent CO2-fixation, the two former producing a marked uncoupling effect on CO2-fixation, similar to that produced by 2:4-dinitrophenol. Molybdate also inhibited iron oxidation. Incorporation of14C-labelled amino acids and glucose was largely dependent on energy from ferrous-iron oxidation and was also strongly inhibited by uranyl sulphate. Kinetic analysis of the inhibition of iron-oxidation by uranium indicated mixed competitive and non-competitive inhibition. Little binding of238U,63Ni or59Fe toT. ferrooxidans was observed and the effects of uranium were concluded to result mainly from loose binding at sites on the cell membrane concerned with iron-oxidation and possibly the transport of other metals. Molybdate probably interfered with sulphate-dependent steps of iron oxidation. Uncoupling of CO2-fixation probably resulted in part from interference with energy metabolism and could depend on transport of uranyl ions through the cell membrane. CO2-fixation by an uraniumtolerant culture (U+) was less sensitive to uranyl-inhibition than that by the wild-type strain (U), but iron oxidation and CO2-fixation were much more sensitive to uranium when the U organisms were previously cultured on thiosulphate rather than ferrous iron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abelson, P. H., Aldous, E.: Ion antagonisms in microorganisms: interference of normal magnesium metabolism by nickel, cobalt, cadmium, zinc and manganese. J. Bact.60, 401–413 (1950)

    PubMed  CAS  Google Scholar 

  • Aleem, M. I. H.: Generation of reducing power in chemosynthesis. IV. Energylinked reduction of pyridine nucleotides by succinate inThiobacillus novellus. Biochim. Biophys. Acta128, 1–12 (1966)

    PubMed  CAS  Google Scholar 

  • Archibald, A. R., Baddiley, J., Heptinstall, S.: The alanine ester content and magnesium binding capacity of walls ofStaphylococcus aureus H grown at different pH values. Biochim. biophys. Acta (Amst.)291, 629–634 (1973)

    CAS  Google Scholar 

  • Armstrong, W. McD., Rothstein, A.: Discrimination between alkali metal cations by yeast. J. gen. Physiol.48, 61–71 (1964)

    Article  PubMed  CAS  Google Scholar 

  • Beck, J. V., Shafia, F. M.: Effect of phosphate-ion and 2,4-dinitrophenol on the activity of intact cells ofThiobacillus ferrooxidans. J. Bact.88, 850–857 (1964)

    PubMed  CAS  Google Scholar 

  • Bhappu, R. B., Reynolds, D. H., Roman, R. J.: Molybdenum recovery from sulfide and oxide ores. J. Metals17, 1199–1205 (1965)

    CAS  Google Scholar 

  • Bounds, H. C., Colmer, A. R.: Comparison of the kinetics of thiosulfate oxidation by three iron-sulfur oxidizers. Canad. J. Microbiol.18, 735–740 (1972)

    Article  CAS  Google Scholar 

  • Brierley, C. L., Murr, L. E.: Leaching: use of a thermophilic and chemoautotrophic microbe. Science179, 488–490 (1973)

    PubMed  Google Scholar 

  • Chopra, I.: Decreased uptake of cadmium by a resistant strain ofStaphylococcus aureus. J. gen. Microbiol.63, 265–267 (1971)

    Google Scholar 

  • Cobet, A. B., Jones, G. E., Albright, J., Simon, H., Wirsen, C.: The effect of nickel on a marine bacterium: fine structure ofArthrobacter marinus. J. gen. Microbiol.66, 185–196 (1971)

    PubMed  CAS  Google Scholar 

  • Dugan, P. R., Lundgren, D. G.: Energy supply for the chemoautotrophFerrobacillus ferrooxidans. J. Bact.89, 825–834 (1965)

    PubMed  CAS  Google Scholar 

  • Duncan, D. W., Bruynesteyn, A.: Microbiological leaching of uranium. New Mexico Bur. Mines Miner. Res., Circ.118, 55–61 (1971)

    Google Scholar 

  • Fuhrmann, G. F., Rothstein, A.: The transport of Zn2+, Co2+ and Ni2+ into yeast cells. Biochim. biophys. Acta (Amst.)163, 325–330 (1968)

    CAS  Google Scholar 

  • Kamalov, M. R.: Adaptation ofThiobacillus ferrooxidans culture to increased amounts of copper, zinc and molybdenum in acid medium. Izv. Akad. Nauk Kaz. SSR, Ser. Biol.10, 39–44 (1972)

    CAS  Google Scholar 

  • Kelly, D. P.: The incorporation of acetate by the chemoautotrophThiobacillus neapolitanus strain C. Arch. Mikrobiol.58, 99–116 (1967)

    Article  PubMed  CAS  Google Scholar 

  • Kelly, D. P.: Biochemistry of oxidation of inorganic sulphur compounds by microorganisms. Austr. J. Sci.31, 165–173 (1968)

    CAS  Google Scholar 

  • Kelly, D. P., Syrett, P. J.: The effect of uncoupling agents on carbon dioxide fixation by aThiobacillus. J. gen. Microbiol.34, 307–317 (1964)

    PubMed  CAS  Google Scholar 

  • Kelly, D. P., Syrett, P. J.: Energy coupling during sulphur compound oxidation byThiobacillus sp. strain C. J. gen. Microbiol.43, 109–118 (1966)

    PubMed  CAS  Google Scholar 

  • Kotyk, A., Michaljaničova, D., Saiyid, N. H.: Effect of uranyl ions on steady state distribution of monosaccharides in Baker's yeast. Folia microbiol. (Praha)16, 355–358 (1971a)

    CAS  Google Scholar 

  • Kotyk, A., Říhová, L., Ponec, M.: Uptake of amino acids by actidione-treated yeast cells. II. Effect of incubation conditions and metabolic inhibitors. Folia microbiol. (Praha)16, 445–450 (1971b)

    CAS  Google Scholar 

  • Lazaroff, N.: Sulfate requirement for iron oxidation byThiobacillus ferrooxidans. J. Bact.85, 78–83 (1963)

    PubMed  CAS  Google Scholar 

  • Lusk, J. E., Kennedy, E. P.: Magnesium transport inEscherichia coli. J. biol. Chem.244, 1653–1655 (1973)

    Google Scholar 

  • Lusk, J. E., Nelson, D. L.: Effects of colicins E1 and K on permeability to magnesium and cobaltous ions. J. Bact.112, 148–160 (1972)

    PubMed  CAS  Google Scholar 

  • Maxwell, W. A., Metzler, R., Spoerl, E.: Uranyl nitrate inhibition of transport systems inSaccharomyces cerevisiae. J. Bact.105, 1205–1206 (1971)

    PubMed  CAS  Google Scholar 

  • Paton, W. H. N., Budd, K.: Zinc uptake inNeocosmospora vasinfecta. J. gen. Microbiol.72, 173–184 (1972)

    CAS  Google Scholar 

  • Peck, H. D.: Symposium on metabolism of inorganic compounds. V. Comparative metabolism of inorganic sulfur compounds in microorganisms. Bact. Rev.26, 67–94 (1962)

    PubMed  CAS  Google Scholar 

  • Roberts, R. B., Abelson, P. H., Cowie, D. B., Bolton, E. J., Britten, R. J.: Studies of biosynthesis inEscherichia coli. Washington D.C.: Carnegie Institution of Washington Publication 1955

    Google Scholar 

  • Rothstein, A.: Enzyme system of the cell surface involved in the uptake of sugars by yeast. Symp. Soc. exp. Biol.8, 165–201 (1954)

    CAS  Google Scholar 

  • Rothstein, A., Meier, R.: The relationship of the cell surface to metabolism. VI. The chemical nature of uranium-complexing groups of the cell surface. J. cell. comp. Physiol.38, 245–270 (1951)

    Article  CAS  Google Scholar 

  • Roy, A., Trudinger, P. A.: The biochemistry of inorganic compounds of sulphur. Cambridge: University Press 1970

    Google Scholar 

  • Sadler, W. R., Trudinger, P. A.: The inhibition of microorganisms by heavy metals. Miner. Depos.2, 158–168 (1967)

    Article  CAS  Google Scholar 

  • Saiyid, N. H., Kotyk, A.: Amino acid transport inRhodotorula utilis. Folia microbiol. (Praha)17, 261–268 (1972)

    CAS  Google Scholar 

  • Saxena, J., Aleem, M. I. H.: Generation of reducing power in chemosynthesis. VII. Mechanism of pyridine nucleotide reduction by thiosulfate in the chemoauthotrophThiobacillus neapolitanus. Arch. Mikrobiol.84, 317–326 (1972)

    Article  PubMed  CAS  Google Scholar 

  • Schnaitman, C. A., Korczynski, M. S., Lundgren, D. G.: Kinetic studies of iron oxidation by whole cells ofFerrobacillus ferrooxidans. J. Bact.99, 552–557 (1969)

    PubMed  CAS  Google Scholar 

  • Silver, M., Johnseine, P., Whitney, E., Clark, D.: Manganese-resistant mutants ofEscherichia coli: physiological and genetic studies. J. Bact.110, 186–195 (1972)

    PubMed  CAS  Google Scholar 

  • Tuovinen, O. H.: Microbiological aspects in the leaching of uranium byThiobacillus ferrooxidans. Atomic Energy Rev.10, 251–258 (1972)

    Google Scholar 

  • Tuovinen, O. H., Kelly, D. P.: Biology ofThiobacillus ferrooxidans in relation to the microbiological leaching of sulphide ores. Z. allg. Mikrobiol.12, 311–346 (1972)

    PubMed  CAS  Google Scholar 

  • Tuovinen, O. H., Kelly, D. P.: Studies on the growth ofThiobacillus ferrooxidans. I. Use of membrane filters and ferrous iron agar to determine viable numbers, and comparison with14CO2-fixation and iron oxidation as measures of growth. Arch. Mikrobiol.88, 285–298 (1973)

    Article  PubMed  CAS  Google Scholar 

  • Tuovinen, O. H., Kelly, D. P.: Studies on the growth ofThiobacillus ferrooxidans. II. Toxicity of uranium to growing cultures and tolerance conferred by mutation, other metal ions and EDTA. Arch. Microbiol.95, 153–164 (1974)

    CAS  Google Scholar 

  • Tuovinen, O. H., Niemelä, S. I., Gyllenberg, H. G.: Tolerance ofThiobacillus ferrooxidans to some metals. Antonie v. Leeuwenhoek37, 489–496 (1971a)

    Article  CAS  Google Scholar 

  • Tuovinen, O. H., Niemelä, S. I., Gyllenberg, H. G.: Effect of mineral nutrients and organic substances on the development ofThiobacillus ferrooxidans. Biotechnol. Bioeng.13, 517–527 (1971b)

    Article  CAS  Google Scholar 

  • Umbreit, W. W., Burris, R. H., Stauffer, N.: Manometric techniques, 4th ed. Minneapolis, Minn.: Burgess 1964

    Google Scholar 

  • van Steveninck, J., Booij, H. L.: The role of polyphosphates in the transport mechanism of glucose in yeast cells. J. gen. Physiol.48, 43–60 (1964)

    Article  Google Scholar 

  • Webb, M.: The mechanism of acquired resistance to Co2+ and Ni2+ in grampositive and gram-negative bacteria. Biochim. biophys. Acta (Amst.)222, 440–446 (1970)

    CAS  Google Scholar 

  • Willecke, K., Gries, E.-M., Oehr, P.: Coupled transport of citrate and magnesium inBacillus subtilis. J. biol. Chem.248, 807–814 (1973)

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuovinen, O.H., Kelly, D.P. Studies on the growth ofThiobacillus ferrooxidans . Arch. Microbiol. 95, 165–180 (1974). https://doi.org/10.1007/BF02451758

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02451758

Keywords

Navigation