Skip to main content
Log in

Derivative-dependent surface-energy terms in nematic liquid crystals

  • Published:
Il Nuovo Cimento D

Summary

The boundary energy terms dependent on the first derivative of the director are analysed theoretically. Although these terms necessarily arise from nonlocal interactions, they are generally written as purely surface terms. We show that, in this case, the stable director configurations are described by functions with discontinuous derivatives at the boundaries. All the solutions given in literature, which are found by explicitly assuming the continuity of the derivatives, must, therefore, be revised. In a more correct formulation of the problem, the ranges of the interaction forces should be taken into account and continuous solutions are then obtained, which are generally well approximated by the discontinuous ones. The approximation, instead, is not good in the case of the energy term proposed by Dubois-Violette and Parodi, where the discontinuity has the form of a Dirac function. In this case a physically meaningful solution can be found only on the basis of a more suitable expression of the boundary energy.

Riassunto

I termini di energia superficiale dipendenti dalla derivata prima del direttore sono analizzati teoricamente. Benché tali termini nascano necessariamente da interazioni non locali, essi sono generalmente scritti come termini di superficie puri. Noi mostriamo che in questo caso le configurazioni stabili del direttore sono descritte da funzioni con derivate discontinue ai contorni. Ne segue che tutte le soluzioni riportate in letteratura che sono trovate assumendo esplicitamente la continuità delle derivate devono essere riviste. In una formulazione piú corretta del problema gli intervalli delle forze d'interazione dovrebbero essere presi in considerazione, ed in questo caso si ottengono soluzioni continue, che sono generalmente ben approssimate da quelle discontinue. L'approssimazione invece non è buona nel casc di termini di energia aventi la forma proposta da Dubois-Violette e Parodi, dove la discontinuità ha la forma di una δ di Dirac. In questo caso soluzioni fisicamente significative possono essere trovate soltanto sulla base di una piú adatta espressione per l'ernergia dello strato superficiale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. See, for example,P. G. de Gennes:The Physics of Liquid Crystals (Clarendon Press, Oxford, 1974).

    Google Scholar 

  2. G. Barbero, N. V. Madhusudana andG. Durand:Z. Naturforsch., Teil A,39, 1066 (1984), and references therein.

    ADS  Google Scholar 

  3. H. Mada:Mol. Cryst. Liq. Cryst.,51, 43 (1979).

    Google Scholar 

  4. C. W. Oseen:Faraday Soc.,29, 833 (1933).

    Article  Google Scholar 

  5. J. Nehring andA. Saupe:J. Chem. Phys.,54, 337 (1971).

    Article  Google Scholar 

  6. S. Shimoda, H. Mada andS. Kobayashi:The Physics and Chemistry of Liquid Crystal Devices, edited byG. J. Sprokel (Plenum Press, New York, N. Y., 1980), p. 47.

    Google Scholar 

  7. H. Mada:Appl. Phys. Lett.,39, 701 (1981).

    Article  ADS  Google Scholar 

  8. H. Mada:Mol. Cryst. Liq. Cryst. Lett.,82, 53 (1982).

    Google Scholar 

  9. H. A. Van Sprang:J. Phys. (Paris),44, 421 (1983).

    Google Scholar 

  10. A. I. Derzhanski andH. P. Hinov:Phys. Lett. A,56, 465 (1976).

    Article  ADS  Google Scholar 

  11. H. P. Hinov:J. Phys. (Paris) Lett.,38, 215 (1977).

    ADS  Google Scholar 

  12. A. I. Derzhanski andH. P. Hinov:J. Phys. (Paris),38, 1013 (1977).

    Google Scholar 

  13. H. P. Hinov andA. I. Derzhanski:J. Phys. (Paris) Colloq.,40, C3–305 (1979).

    Google Scholar 

  14. M. I. Barnik, L. M. Blinov, T. V. Korkisho, B. A. Umanski andV. G. Chrigrinov:Mol. Cryst. Liq. Cryst.,99, 53 (1983).

    Google Scholar 

  15. M. I. Barnik, L. M. Blinov, T. V. Korkishko, B. A. Umanski andV. G. Chrigrinov:Soc. Phys. JETP.,58, 102 (1984).

    Google Scholar 

  16. G. Barbero, R. Bartolino andM. Meuti:J. Phys. (Paris) Lett.,45, 449 (1984).

    Google Scholar 

  17. G. Barbero andA. Strigazzi:J. Phys. (Paris) Lett.,45, 857 (1984).

    Google Scholar 

  18. E. Dubois-Violette andO. ParodiJ. Phys. (Paris) Colloq.,30, C4–57 (1969).

    Google Scholar 

  19. V. Smirnov:Cours de Mathématiques Superieures, Vol.4, Tome 2 (MIR, Moscow, 1969).

    Google Scholar 

  20. R. S. Schechter:The Variational Method in Engineering (McGraw-Hill, New York, N. Y., 1967).

    MATH  Google Scholar 

  21. L. Elsgolts:Differential Equations and the Calculus of Variations (MIR, Moscow, 1977).

    Google Scholar 

  22. M. L. Krasnov, G. I. Makarenko andA. I. Kiselev:Problems in the Calculus of Variations (MIR, Moscow, 1984).

    MATH  Google Scholar 

  23. R. Weinstock:Calculus of Variations, with Applications of Physics and Engineering (McGraw-Hill, New York, N. Y., 1952).

    MATH  Google Scholar 

  24. E. Dubois-Violette andP. G. de Gennes:J. Phys. Lett. (Paris),36, L-255 (1975).

    Google Scholar 

  25. A. L. Cauchy:Memoire sur les systèmes isotrope des points materials Oeuvres.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work supported by CNR under contract No. 84.01186.11.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbero, G., Oldano, C. Derivative-dependent surface-energy terms in nematic liquid crystals. Il Nuovo Cimento D 6, 479–493 (1985). https://doi.org/10.1007/BF02451904

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02451904

PACS. 61.30

Navigation