Skip to main content
Log in

Further considerations in a theoretical description of gas transport in lung airways

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A discrete one-dimensional model of convection-diffusion in branching alveolar ducts is described and it is shown that, for a suitable choice of effective axial dispersion, the solution closely approximates that for an axially symmetric representation, at least for Peclet numbers Pe<1. Following earlier work a composite model of a uniform lung is formed by matching such a respiratory pathway (now having the more convenient one-dimensional form) onto a trumpet representation of the conducting airways. Enhanced mixing due to heart action, and isotropic volume changes of trumpet (in addition to the pathway) during breathing are additional factors included.

Calculations are made of O2 concentrations during steady-state breathing and of the concentration of inert gas during single breath wash-out of a gas mixture containing it. Predicted alveolar levels in each case agree extremely well with published data, although no alveolar slope is obtained for the inert gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Bachofen, H., H. J. Hobi and M. Scherrer. 1973. “Alveolar-Arterial N2 Gradients At Rest and During Exercise in Healthy Men of Different Ages.”J. Appl. Physiol. 34, 137–142.

    Google Scholar 

  • Baker, L. G., J. S. Ultman and R. A. Rhoades. 1974. “Simultaneous Gas Flow and Diffusion in a Symmetric Airway System: a Mathematical Model.”Resp. Physiol. 21, 119–138.

    Article  Google Scholar 

  • Butler, J. P. 1977. “The Green's Function for the Convection-Diffusion Equation in an Analytic Lung Model.”Bull. Math. Biol. 39, 543–563.

    Article  MATH  MathSciNet  Google Scholar 

  • Chang, H., R. T. Cheng and L. E. Farhi. 1973. “A Model Study of Gas Diffusion in Alveolar Sacs.”Resp. Physiol. 18, 386–397.

    Article  Google Scholar 

  • Chang, D. B., S. M. Lewis and A. C. Young. 1976. “A Theoretical Discussion of Diffusion and Convection in the Lung.”Mathl Biosci. 29, 331–349.

    Article  MATH  Google Scholar 

  • Cumming, G., K. Horsfield, J. G. Jones and D. C. F. Muir. 1967. “The Influence of Gaseous Diffusion on the Alveolar Plateau at Different Lung Volumes.”Resp. Physiol. 2, 386–398.

    Article  Google Scholar 

  • —— and S. B. Preston. 1971. “Diffusion Equilibrium in the Lungs Examined by Nodal Analysis.”Resp. Physiol. 12, 329–345.

    Article  Google Scholar 

  • Davidson, M. R. and J. M. Fitz-Gerald. 1972. “Flow Patterns in Models of Small Airway Units of the Lung.”J. Fluid Mech. 52, 161–177.

    Article  MATH  Google Scholar 

  • — and —. 1974. “Transport of O2 Along a Model Pathway Through the Respiratory Region of the Lung.”Bull. Math. Biol. 36, 275–303.

    Article  MATH  Google Scholar 

  • —. 1975. “Lung Gas Mixing During Expiration Following an Inspiration of Air.”Bull. Math. Biol. 37, 113–126.

    Article  Google Scholar 

  • Engel, L. A., H. Menkes, L. D. Wood, G. Utz, J. Joubert and P. T. Macklem. 1973a. “Gas Mixing During Breath Holding Studies by Intrapulmonary Gas Sampling.”J. Appl. Physiol. 35, 9–17.

    Google Scholar 

  • —, L. D. H. Wood, G. Utz and P. T. Macklem. 1973b. “Gas Mixing During Inspiration.”J. Appl. Physiol. 35, 18–24.

    Google Scholar 

  • Flint, L. F. and P. Eisenklam. 1970. “Dispersion of Matter in Transitional Flow Through Straight Tubes.”Proc. R. Soc. A315, 519–533.

    Google Scholar 

  • Fukuchi, Y., C. S. Roussos, P. T. Macklem and L. A. Engel. 1976. “Convection, Diffusion and Cardiogenic Mixing of Inspired Gas in the Lung; an Experimental Approach.”Resp. Physiol. 26, 77–90.

    Article  Google Scholar 

  • Gill, W. N. and R. Sankarasubramanian. 1970. “Exact Analysis of Unsteady Convective Diffusion.”Proc. R. Soc. A316, 341–350.

    MATH  Google Scholar 

  • Gourlay, A. R., 1970. “Hopscotch: a Fast Second-order Partial Differential Equation Solver.”J. Inst. Maths. Applics 6, 375–390.

    MATH  MathSciNet  Google Scholar 

  • Hansen, J. E. and E. P. Ampaya. 1975. “Human Air Space Shapes, Sizes, Areas and Volumes.”J. Appl. Physiol. 38, 990–995.

    Google Scholar 

  • Horsfield, K., G. Dart, D. E. Olson, G. F. Filley and G. Cumming. 1971. “Models of the Human Bronchial Tree.”J. Appl. Physiol. 31, 207–217.

    Google Scholar 

  • Hughes, J. M. B., F. G. Hoppin, Jr. and J. Mead. 1972. “Effect of Lung Inflation on Bronchial Length and Diameter in Excised Lungs.”J. Appl. Physiol. 32, 25–35.

    Google Scholar 

  • Kvale, P. A., J. Davies and R. C. Schroter. 1975. “Effect of Gas Density and Ventilatory Pattern on Steady State CO Uptake by the Lung.”Resp. Physiol. 24, 385–398.

    Article  Google Scholar 

  • Mon, E. and J. S. Ultman. 1976. “Monte Carlo Simultaneous of Gas Flow and Diffusion in an Asymmetric Distal Pulmonary Airway Model.”Bull. Math. Biol. 38, 161–192.

    Article  MATH  MathSciNet  Google Scholar 

  • Owen, P. R., 1969. “Turbulent Flow and Particle Deposition in the Trachea.” InCIBA Symposium on Circulatory and Respiratory Mass Transport. London: Churchill.

    Google Scholar 

  • Pack, A., M. B. Hooper, W. Nixon and J. C. Taylor. 1977. “A Computational Model of Pulmonary Gas Transport Incorporating Effective Diffusion.”Resp. Physiol. 29, 101–124.

    Article  Google Scholar 

  • Paiva, M. 1972. ”Computation of the Boundary Conditions for Diffusion in Human Lung.”Comput. Biomed. Res. 5, 585–595.

    Article  Google Scholar 

  • —. 1973. “Gas Transport in the Human Lung.”J. Appl. Physiol. 35, 410–410.

    Google Scholar 

  • —. 1974. “Gaseous Diffusion in an Alveolar Duct Simulated by a Digital Computer.”Comput. Biomed. Res. 7, 533–543.

    Article  Google Scholar 

  • —, L. M. Lacquet and L. P. Van der Linden. 1976. “Gas Transport in a Model Derived From Hansen-Ampaya Anatomical Data of the Human Lung.”J. Appl. Physiol. 41, 115–119.

    Google Scholar 

  • Parker, H., K. Horsfield and G. Cumming. 1971. “Morphology of Distal Airways in the Human Lung.”J. Appl. Physiol. 31, 386–391.

    Google Scholar 

  • Pedley, T. J. 1970. “A Theory for Gas Mixing in a Simple Model of the Lung.” InFluid Dynamics of Blood Circulation and Respiratory Flow. AGARD Conference Proceedings No. 65.

  • —, M. F. Sudlow and J. Milic-Emili. 1972. “A Non-linear Theory of the Distribution of Pulmonary Ventilation.”Resp. Physiol. 15, 1–38.

    Article  Google Scholar 

  • —. 1977. “Pulmonary Fluid Dynamics.”Ann. Rev. Fluid Mech. 9, 229–274.

    Article  MATH  Google Scholar 

  • Roache, P. J. 1972.Computational Fluid Dynamics. Albuquerque: Hermosa.

    Google Scholar 

  • Scherer, P. W., L. H. Shendalman and N. M. Greene. 1972. “Simultaneous Diffusion and Convection in Single Breath Lung Washout.”Bull. Math. Biophys. 34, 393–412.

    MATH  Google Scholar 

  • ———. 1972. “Simultaneous Diffusion and Convection in Single Breath Lung Washout.”Bull. Math. Biophys. 34, 393–412.

    MATH  Google Scholar 

  • ——— and A. Bouhuys. 1975. “Measurement of Axial Diffusivities in a Model of the Bronchial Airways.”J. Appl. Physiol. 38, 719–723.

    Google Scholar 

  • — and F. R. Haselton. 1979. “Convective Mixing in Tube Networks.”A.I.Ch.E.Jl 25, 542–544.

    Google Scholar 

  • Ultman, J. S. and H. S. Blatman. 1977. “Longitudinal Mixing in Pulmonary Airways. Analysis of Inert Gas Dispersion in Symmetric Tube Network Models.”Resp. Physiol. 30, 349–367.

    Article  Google Scholar 

  • —, B. E. Doll, R. Spiegel and M. W. Thomas. 1978. “Longitudial Mixing in Pulmonary Airways—Normal Subjects Respiring at a Constant Flow.”J. Appl. Physiol. 44, 297–303.

    Google Scholar 

  • Weibel, E. R. 1962.Morphometry of the Human Lung. Berlin: Springer.

    Google Scholar 

  • Wilson, T. A. and K. H. Lin. 1970. “Convection and Diffusion in the Lung Airways and the Design of the Bronchial Tree.” In:Airway Dynamics, Ed. A. Bouhuys. Springfield, IL: C. C. Thomas.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davidson, M.M. Further considerations in a theoretical description of gas transport in lung airways. Bltn Mathcal Biology 43, 517–548 (1981). https://doi.org/10.1007/BF02462311

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02462311

Keywords

Navigation