Skip to main content
Log in

The optical transition in porous Si: The effects of quantum confinement, surface states and hydrogen passivation

  • Published:
Il Nuovo Cimento D

Summary

We present a theoretical study of two infinite wires of Si with a different lateral size. The analysis is based on the linear muffin tin orbitals method in the atomic sphere approximation (LMTO-ASA). We consider free, partially and totally H-covered [001] Si quantum wires with rectangular cross-section. The results of this investigation prove the quantum wire nature of porous Si and interpret many of its physical features. In particular we show that a) as expected quantum confinement originates the opening of the LDA gap; b) the gap opening effect is asymmetric: 1/3 of the widening is in the valence band, while 2/3 in the conduction band; c) the near band gap states originate from Si atoms located at the center of the wire; d) the confinement is enhanced in the case of free surfaces; e) the imaginary part of the dielectric function shows a low-energy side structure strongly anisotropic, identified as responsible of the luminescence transition; f) the presence of dangling bonds destroys the luminescence properties; g) in spite of feature c), all Si atoms are collectively involved in the luminescence transition; h) the shift detected by the Si L2, 3VV Auger signal is due to H-interaction effect and is not a measure of the quantum confinement effect; i) the Si atoms probed by the Si L2, 3VV Auger are bonded with H and H2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Canham L. T., Appl. Phys. Lett., 57 (1990) 1046.

    Article  ADS  Google Scholar 

  2. For a recent review see Canham L. T., in Optical Properties of Low Dimensional Silicon Structures, edited by D. Bensahel, L. T. Canham and S. Ossicini (Kluwer Academic Publishers, Dordrecht) 1993, p. 81.

    Google Scholar 

  3. Hybertsen M. S., Mater. Res. Soc. Proc., 256 (1992) 179.

    Google Scholar 

  4. Proot J. P., Delerue C. and Allan G., Appl. Phys. Lett., 61 (1992) 1948.

    Article  ADS  Google Scholar 

  5. Ren S. Y. and Dow J. D., Phys. Rev. B, 45 (1992) 6492.

    Article  ADS  Google Scholar 

  6. Sanders G. D. and Chang Y. C., Phys. Rev. B, 45 (1992) 9202.

    Article  ADS  Google Scholar 

  7. Koch F., Petrova-Koch V., Muschik T., Kux A., Müller F., Gavrilenko V. and Möller F., in The Physics of Semiconductors, edited by Ping Yang and Hou-Zhi Zheng (World Scientific, Singapore) 1992, p. 1483.

    Google Scholar 

  8. Read A. J., Needs R. J., Nash K. J., Canham L. T. Calcott P. D. J. and Qteish A., Phys. Rev. Lett., 69 (1992) 1232.

    Article  ADS  Google Scholar 

  9. Buda F., Kohanoff J. and Parrinello M., Phys. Rev. Lett., 69 (1992) 1272.

    Article  ADS  Google Scholar 

  10. Ohno T., Shiraishi K. and Ogawa T., Phys. Rev. Lett., 69 (1992) 2400.

    Article  ADS  Google Scholar 

  11. Van de Walle C. G. and Northrup J. E., Phys. Rev. Lett., 70 (1993) 1116.

    Article  ADS  Google Scholar 

  12. Hybertsen M. S. and Needels M., Phys. Rev. B, 48 (1993) 4608.

    Article  ADS  Google Scholar 

  13. Yeh C.-Y., Zhang S. B. and Zunger A., Phys. Rev. B, 50 (1994) 14405.

    Article  ADS  Google Scholar 

  14. Dorigoni L., Bisi O., Bernardini F. and Ossicini S., Phys. Rev. B, 53 (1996) 4557.

    Article  ADS  Google Scholar 

  15. Vial J. C., Bsiesy A., Gaspard F., Hérino R., Lugeon M., Muller F., Romenstain R. and Macfarlane R. M., Phys. Rev. B, 95 (1992) 14171.

    Article  Google Scholar 

  16. Calcott P. D. J., Nash K. J., Canham L. T., Kane M. J. and Brumhead D., J. Phys. Condensed Matter, 5 (1993) L91.

    Article  ADS  Google Scholar 

  17. Koch F., in Silicon based optoelectronic materials, edited by M. A. Tischler, R. T. Collins, M. L. Thewalt and G. Abstreiter, Mater. Res. Soc. Symp. Proc., 298 (1993) 319.

  18. Brandt M. S., Fuchs H. D., Stutzmann M., Weber J. and Cardona M., Solid State Commun., 81 (1992) 307.

    Article  ADS  Google Scholar 

  19. Prokes S. M., Glembocky O. J. Bermudez V. M., Kaplan R., Friedersdorf L. E. and Searson P. C., Phys. Rev. B, 45 (1992) 13788.

    Article  ADS  Google Scholar 

  20. van Buuren T., Tiedje T., Patitsas S. N. and Weydanz W. Phys. Rev. B, 50 (1994) 2719.

    Article  ADS  Google Scholar 

  21. Voos M., Uzan Ph., Delalande C., Bastard G. and Halimaoui A., Appl. Phys. Lett., 61 (1992) 1213.

    Article  ADS  Google Scholar 

  22. Lockwood D. J., Solid State Commun., 92 (1994) 101.

    Article  ADS  Google Scholar 

  23. Brandt M. S. and Stutzmann M., Appl. Phys. Lett., 61 (1992) 2569.

    Article  ADS  Google Scholar 

  24. Ferrieu F., Halimaoui A. and Bensahel D., Solid State Commun., 84 (1992) 293.

    Article  ADS  Google Scholar 

  25. Koshida N. Koyama H., Suda Y. Yamamoto Y., Araki M., Saito T., Sato K., Sata N. and Shin S., Appl. Phys. Lett., 63 (1993) 2774.

    Article  ADS  Google Scholar 

  26. Feibelman P. J. and McGuire E. J., Phys. Rev. B, 17 (1978) 690; Bisi O., in Auger Spectroscopy and Electronic Structure, edited by G. Cubiotti, G. Mondio and K. Wandelt (Springer-Verlag) 1989, p. 30.

    Article  ADS  Google Scholar 

  27. Dorigoni L., Pavesi L., Bisi O. Calliari L., Anderle M. and S. Ossicini, Thin Solid Films, 276 (1996) 244.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Ossicini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ossicini, S., Bisi, O. The optical transition in porous Si: The effects of quantum confinement, surface states and hydrogen passivation. Nuov Cim D 18, 1121–1129 (1996). https://doi.org/10.1007/BF02464690

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02464690

PACS 85.60

PACS 01.30.Cc

Navigation