Skip to main content
Log in

Size effects on tensile fracture properties: a unified explanation based on disorder and fractality of concrete microstructure

  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Tests were carried out using three independent jacks orthogonally disposed, making it possible to apply a purely tensile force, so that the secondary flexural stresses, if kept under control, constitute a degree of error comparable with the values allowed for normal testing apparatus. The method enables a stress versus strain curve to be plotted with the descending (softening) branch up to the point where the cross-section of the tensile specimen breaks away. The principal purpose is to avoid any spurious effect that might provide a fallacious explanation of the recurring size effects on apparent tensile strength and fictitious fracture energy. Once the secondary effects have been excluded, only the disorder and fractality of the concrete microstructure remain to explain such fundamental trends. In the case of tensile strength, the dimensional decrement represents self-similar weakening of the material ligament, due to pores, voids, defects, cracks, aggregates, inclusions, etc. Analogously, in the case of fracture energy, the dimensional increment represents self-similar tortuosity of the fracture surface, as well as self-similar overlapping and distribution of microcracks in the direction orthogonal to that of the forming macrocrack.

Resume

L'expérience a été conduite en utilisant trois vérins indépendants placés orthogonalement. Celà a permis d'appliquer une charge de traction pure de façon que les contraintes secondaires de fléxion, si elles sont contrôlées, donnent des erreurs dont l'ordre de grandeur est comparable au valeurs tolérées pour les appareils utilisés normalement. Ce gendre de méthode expérimentale permet de suivre la partie descendante (écrouissage négatif) de la courbe effort-déformation jusqu'au point où la section transversale de l'échantillon sous traction se casse. Le but principal est d'éviter tous les faux effets qui peuvent nous conduire à des explications erronées à propos des effets d'échelle récurrents sur l'allure de la résistance à la traction apparente et de l'énergie de rupture fictive. Une fois que les effets secondaires ont été exclus, seuls le désordre et le caractère fractal de la microstructure du béton permettent de justifier cette tendance fondamentale. Dans le cas de la résistance à la traction, la diminution dimensionnelle représente un affaiblissement des liaisons du matériau, dû aux pores, aux vides, aux défauts, aux fissures, aux granulats, aux inclusions, etc. D'une manière analogue, dans le cas de l'énergie de rupture, l'accroissement dimensionnel représente la sinuosité de la surface de rupture, ainsi que la superposition et la distribution des microfissures dans la direction perpendiculaire à celle des microfissures en formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L'Hermite, R., ‘Idées actuelles sur la technologie du béton’, Collection de l'Institut Technique du Bâtiment et des Travaux Publics, Paris, 1955.

  2. Rusch, H. and Hilsdorf, H. K., ‘Deformation characteristics of concrete under axial tension’,Voruntersuchungen 44 (1963).

  3. Hughes, B. P. and Chapman, G. P., ‘The complete stress-strain curves for concrete in direct tension’,RILEM Bull. 30 (1966) 95–97.

    Google Scholar 

  4. Evans, R. H. and Marathe, M. S., ‘Microcracking and stress-strain curves for concrete in tension’,Mater. Struct. 1 (1968) 61–64.

    Google Scholar 

  5. Heilmann, H. G., Hilsdorf, H. K. and Finsterwalder, K., ‘Festigkeit und Verformung von Beton unter Zugspannungen’,Deutsch. Ausschuss Stahlbeton 203 (1969).

  6. Petersson, P. E., ‘Crack growth and development of fracture zones in plain concrete and similar materials’, Report TVBM-1006 (Division of Building Materials, Lund Institute of Technology, 1981).

  7. Gopalaratnam, V. S. and Shah, S. P., ‘Softening response of plain concrete in direct tension’,J. ACI 82 (1985) 310–323.

    Google Scholar 

  8. Reinhardt, H. W., Cornelissen, A. W. and Hordijk, D. A., ‘Tensile tests and failure analysis of concrete’,J. Struct. Eng. 112 (1986) 2462–2477.

    Article  Google Scholar 

  9. Phillips, D. V. and Zhang, B., ‘Fracture energy and brittleness of plain concrete specimens under direct tension’, in ‘Fracture Behaviour and Design of Materials and Structures’, edited by D. Firrao, Proceedings of the 8th European Conference on Fracture, Torino, Italia, October, 1990 (EMAS, Warley, 1991) pp. 646–652.

    Google Scholar 

  10. van Mier, J. G. M., ‘Scaling in tensile and compressive fracture of concrete’, in ‘Applications of Fracture Mechanics to Reinforced Concrete’, edited by A. Carpinteri (Chapman and Hall, London, 1992) pp. 19–31.

    Google Scholar 

  11. Saouma, V. E., Barton, C. C. and Gamaleldin, N. A., ‘Fractal characterization of fracture surfaces in concrete’,Engng Fract. Mech. 35 (1990) 47–53.

    Article  Google Scholar 

  12. Mandelbrot, B. B., ‘The Fractal Geometry of Nature’ (W. H. Freeman and Company, New York, 1982).

    MATH  Google Scholar 

  13. Falconer, K., ‘Fractal Geometry: Mathematical Foundations and Applications’ (Wiley, Chichester, 1990).

    MATH  Google Scholar 

  14. Griffith, A. A., ‘The phenomena of rupture and flow in solids’,Phil. Trans. R. Soc. Lond. A221 (1921) 163–198.

    Google Scholar 

  15. Weibull, W., ‘A Statistical Theory of the Strength of Materials’ (Swedish Royal Institute for Engineering Research, Stockholm, 1939).

    Google Scholar 

  16. Freudenthal, A. M., ‘Statistical approach to brittle fracture’, in ‘Fracture’ edited by H. Liebowitz, Vol. 2 (Academic Press, New York, 1968) pp. 591–619.

    Google Scholar 

  17. Jayatilaka, A. S., ‘Fracture of Engineering Brittle Materials’ (Applied Science, London, 1979).

    Google Scholar 

  18. Carpinteri, A., ‘Decrease of apparent tensile and bending strength with specimen size: two different explanations based on fracture mechanics’,Int. J. Solids Struct. 25 (1989) 407–429.

    Article  Google Scholar 

  19. Idem, ‘Mechanical Damage and Crack Growth in Concrete: Plastic Collapse to Brittle Fracture’ (Martinus Nijhoff, Dordrecht, 1986).

    MATH  Google Scholar 

  20. Mandelbrot, B. B., Passoja, D. E. and Paullay, A. J., ‘Fractal character of fracture surfaces of metals’,Nature 308 (1984) 721–722.

    Article  Google Scholar 

  21. RILEM Technical Committee 50, ‘Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams’, Draft RecommendationMater. Struct. 18 (1985) 287–290.

    Google Scholar 

  22. Meakin, P., ‘Models for material failure and deformation’,Science 252 (1991) 226–234.

    Google Scholar 

  23. Carpinteri, A., ‘Experimental determination of fracture toughness parametersK IC andJ IC and aggregative materials’ Proceedings of the Fifth International Conference on Fracture (Pergamon Press, Oxford, 1981) pp. 1491–1498.

    Google Scholar 

  24. Idem, ‘Static and energetic fracture parameters for rocks and concretes’,Mater. Struct. 14 (1981) 151–162.

    Google Scholar 

  25. Idem, ‘Notch sensitivity in fracture testing of aggregative materials’,Engng Fract. Mech. 16 (1982) 467–481.

    Article  Google Scholar 

  26. Idem, ‘Interpretation of the Griffith instability as a bifurcation of the global equilibrium’, in ‘Applications of Fracture Mechanics to Cementitious Composities’, edited by S. P. Shah (Martinus Nijhoff, Dordrecht, 1985), pp. 287–316.

    Google Scholar 

  27. Idem, ‘Limit analysis for elastic-softening structures: scale and slenderness influence on the global brittlenes’, in ‘Brittle Matrix Composites’, edited by A. M. Brandt and I. H. Marshall (Elsevier Applied Science, London, 1986) pp. 497–508.

    Google Scholar 

  28. Idem., ‘Cusp catastrophe interpretation of fracture instability’,J. Mech. Phys. Solids 37 (1989) 567–582.

    Article  MATH  Google Scholar 

  29. Tang, T., Shah, S. P. and Ouyang, C., ‘Fracture mechanics and size effect of concrete in tension’,J. Struct. Engng, ASCE 118 (1992) 3169–3185.

    Google Scholar 

  30. Lange, D. A., Jennings, H. M. and Shah, S. P., ‘Relationship between fracture surface roughness and fracture behavior of cement paste and mortar’,J. Am. Ceram. Soc. 76 (1993) 589–597.

    Article  Google Scholar 

  31. Wilson, K. G., ‘Renormalization group and critical phenomena’,Phys. Rev. B4 (1971) 3174–3205.

    Article  Google Scholar 

  32. Herrmann, H. J. and Roux, S., ‘Statistical Models for the Fracture of Disordered Media’ (North-Holland, Amsterdam, 1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carpinteri, A., Ferro, G. Size effects on tensile fracture properties: a unified explanation based on disorder and fractality of concrete microstructure. Materials and Structures 27, 563–571 (1994). https://doi.org/10.1007/BF02473124

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02473124

Keywords

Navigation