Skip to main content
Log in

The thermodynamics of volume change and creep

  • Colloque RILEM Munich. 1–3 Avril 1968
  • Causes Physiques et Chimiques du Fluage et du Retrait du Béton
  • Published:
Matériaux et Construction Aims and scope Submit manuscript

Résumé

  1. 1

    A quelques exceptions près, les premiers observateurs du fluage du béton supposaient que la déformation en fonction du temps était due à l'écoulement plastique ou visqueux. On en, vient maintenant à penser que le fluage, de même que le retrait est un phénomène qui dépend de l'adsorption et de la désorption de l'eau et des phénomènes en relation. Pour comprendre le fluage, il faut d'abord comprendre le retrait et le gonflement. Une analyse de ces phénomènes à partir de la thermodynamique est particulièrement instructive et sûre, car en général elle ne dépend pas de la conformité du modèle de structure adopté pour la discussion.

  2. 2

    Un changement spontané de volume est dû à une modification de l'équilibre des forces et des réactions dans l'éprouvette il ne peut être dû aux seuls départs ou additions de molécules d'eau.

  3. 3

    Le volume d'un corps poreux varie avec la densité du matériau qui le constitue. La densité du matériau varie avec la pression hydrostatique, la température, ou encore avec une modification de la tension superficielle du matériau.

  4. 4

    Les modifications de tension superficielle affectent probablement à la fois la composante interne et la composante externe de la tension de courbure d'un matériau spécifique et inversement.

  5. 5

    La tension superficielle, qui n'est autre que l'énergie libre superficielle, varie avec la quantité d'eau adsorbée, et ce phénomène est fonction de la pression de vapeur ambiante à température constante. La modification de la tension superficielle d'un solide peut être calculée d'après la modification concomitante de l'humidité ambiante.

  6. 6

    Le changement de volume d'un corps correspondant à une modification donnée de la tension superficielle découle de la modification des composantes internes et externes; il est actuellement indéterminé et, dans tous les cas, c'est une petite fraction du volume total qu'on a à considérer.

  7. 7

    Les observations de la structure de la pâte montrent que l'eau adsorbée doit produire une pression disjonctive dans les espaces les plus étroits entre les solides o\`u l'adsorption est empêchée.

Summary

  1. 1

    With some exceptions, early observers of creep of concrete assumed that time-dependent strain is due to plastic flow or viscous flow. It is now becoming understood that creep, like shrinkage, is a phenomenon depending on adsorption and desorption of water and related phenomena. Understanding shrinking and swelling is prerequisite to understanding creep. An analysis of these phenomena based on thermodynamics is especially instructive and reliable because in general it does not depend on the correctness of the model of structure adopted for the discussion.

  2. 2

    Spontaneous volume change is due to a change in the balance of forces and counterforces within the specimen. It cannot be due to the removal or addition, per se, of water molecules.

  3. 3

    The volume of a porous body will vary with the density of the material of which it is made. Material density will vary with hydrostatic pressure, with temperature, or with change in surface tension of the material.

  4. 4

    Change of surface tension presumably affects both the inner part and the outer tension shell of particulate material, and oppositely.

  5. 5

    Surface tension, which is the same as surface free energy, varies with the amount of water adsorbed, and that is a function of ambient vapor pressure at constant temperature. The change in solid surface tension can be calculated from the concomitant change in ambient humidity.

  6. 6

    The volume change of the body corresponding to a given change in surface tension is the resultant of the change of the inner and outer parts, is at present indeterminate, and is in any case a small fraction of the amount of volume change to be accounted for.

  7. 7

    Data on paste structure show that adsorbed water must produce disjoining pressure in the narrowest places between solid bodies, where adsorption is hindered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Kessler, C. E., andAli, I.,Rheology of concrete, A Review. T. & Am. Report no 636, 1963, Depart. of Theoretical and Applied Mechanics, Univ. of Illinois.

  2. Freyssinet, E.,The deformation of concrete, Magazine of Concrete Research (London), 3, no 8, 44–56, 1951. Cement and Concrete Association. Other papers published in the 1930's by Freyssinet.

    Google Scholar 

  3. Lynam, D. G.,Growth and movement in Portland cement concrete, Oxford University Press, London, 1934.

    Google Scholar 

  4. Lea, F. M., andLee, C. R.,Shrinkage and creep in concrete. The Society of Chemical Industry, Symposium on Shrinkage and Cracking of Cementive Materials, London 1947, pp. 17–22.

  5. Flood, E. A. andFarham, F. M.,Stresses and strains in adsorbent-adsorbate systems. V.: Thermodynamic theory of adsorption extension phenomena. Canadian Journal of Chemistry, 41, 1703, 1717, 1963.

    Article  Google Scholar 

  6. Bangham, D. H., andFakhoury, M.,The swelling of charcoal. I; preliminary experiments with water vapor, carbon dioxide, and sulfur dioxide. Proc. Royal Soc. A 120 81–90, 1930.

    Google Scholar 

  7. Powers, T. C.,The mechanisms of shrinkage and reversible creep of hardened cement paste. International Conf. on the Structure of Concrete, London, 1965. Forthcoming Proceedings.

  8. Powers, T. C.,The properties of fresh concrete, Chapter 9, John Wiley & Sons, New York. (1968).

    Google Scholar 

  9. Mikahil, R. Sh. andSelim, S. A.,Adsorption of organic vapors in relation to pore structure of hardened Portland cement pastes. Highway Research Board Special Report (no 90, p. 123–134). Symposium on Structure of Portland Cement Paste and Concrete, Washington, D. C. 1966.

    Google Scholar 

  10. Barkas,Swelling stress in gels, Dep. of Scientific and Industrial Research, Building Science Research Station, National Building Studies, Special Report no 6, 1945. (Revised 1950).

  11. Powers, T. C., andBrownyard, T. L.,Studies of the physical properties of hardened cement paste. Proc. ACI43, 101–132, 249–336, 469–504, 549–602, 669–712, 845–880, 1947. Also Bull. 22, Portland Cement Assoc. Res. Lab. Chicago, 1947.

    Google Scholar 

  12. Powers, T. C.,Properties of cement paste and concrete, paper V–I: physical properties of cement paste. Proc. 4th International Symposium on the Chemistry of Cement, Washington, D.C. 1960, Vol. 2, p. 577, Monograph no 43, the National Bureau of Standards, 1962.

    Google Scholar 

  13. Powers, T. C.,Fundamental aspects of the shrinkage of concrete, Third International Congress of Precast Industry, Stockholm, June, 1960. Swedish Cement Association Publication no 16, September 1961.

  14. Powers, T. C., Copeland, L. E., andMann, H. M. Capillary continuity or discontinuity in cement paste. Jl. Research & Development Lab.1, no 2, 38–48, 1959.

    Google Scholar 

  15. Meyers, S. L.,Thermal expansion characteristics of hardened cement paste and concrete, Proc. Highway Research Board,30, 193–203, 1950.

    Google Scholar 

  16. Pascal, A., Vironnaud, L., andVan Thanh, N.,Dilatometer with an optical tripod: construction, placing and technique of using apparatus, tests and results of experiments. Annales de l'Inst. Tech. Batim. et Trav. Publ., 7: 78, 522–540, 1954.

    Google Scholar 

  17. Powers, T. C.,Structure and physical properties of Portland cement paste. Jl. Am. Ceramic Society 41: 1 1–6, 1958.

    Article  Google Scholar 

  18. Helmuth, R. A.,Dimensional changes of hardened Portland cement pastes caused by temperature changes. Highway Research Board Proceedings40, 315–336, 1961. Portland Cement Assoc. Res. Dept. Bulletin no 129, 1961.

    Google Scholar 

  19. Wischers, G.,Einfluss einer Temperatur anderung auf die Festigkeit von Zementstein und Zementmoriel mit Zuschlagstoffen verschiedener Würmedehnung. Forschungsinstitut der Zement-industrie, Dusseldorf, 1961.

    Google Scholar 

  20. Powers, T. C.,Some observations on the interpretation of creep data. RILEM Bulletin no 33, 381–391, Déc. 1966.

    Google Scholar 

  21. Helmuth, R. A.,The reversible and irreversible drying shrinkage of hardened Portland cement and tricalcium silicate pastes. Jl. of the Portland Cement Assoc. Research and Development Laboratories,9, no 2, 8–21, May, 1967.

    Google Scholar 

  22. Sereda, P. J., Feldman, R. F., andSwenson E. G.,Effect of sorbed water on some mechanical properties of hydrated Portland cement pastes and compacts. Highway Research Board, Special Report no 90, pp. 58–73, Washington, D. C. 1966.

    Google Scholar 

  23. Glucklich, J., andIshai, O.,Creep mechanism in cement mortar, Proc. A.C.I., 59, 923–948, 1962.

    Google Scholar 

  24. Ishai, O.,Elastic and inelastic behavior of cement mortar in torsion. Symposium on Creep of Concrete, Houston, Texas, 1964. American Concrete Institute Publication SP-9, 1964.

  25. Mullen, W. G., andDolch, W. L.,Creep of Portland cement paste. Proc. ASTM, 64, 1146–1170, 1964.

    Google Scholar 

  26. Kordina, K.,Experiments on the influence of the mineralogical character of aggregates on the creep of concrete, RILEM Bull. New Series no 6, p. 7–22, March 1960.

    Google Scholar 

  27. Helmuth, R. A., Turk, D.,Elastic moduli of hardened Portland cement and tricalcium silicate pastes: effect of porosity. Highway Research Board Special Publication no 90, pp. 135–144, Washington, D. C., 1966.

    Google Scholar 

  28. Hansen, T. C.,Creep and stress relaxation of concrete. Swedish Cement and Concrete Research Institute Proceeding no 31, pp. 26–32, 1960.

    Google Scholar 

  29. Béres, L.,Investigation on structural loosening of compressed concrete. RILEM Bulletin, New Series no 36, pp. 185–190, September 1967.

    Google Scholar 

  30. Richards, C. W. andRadjy, F.,A new application of internal friction to concrete research. Materials Research and Standards,6, pp. 386–392, 1966.

    Google Scholar 

  31. Copeland, L. E., andYoung, T. F.,Thermodynamic theory of adsorption, solid surfaces and the gas-solid interface. Advances in Chemistry Series, American Chemical Soc., 1961. Reprinted in Research Department Bulletin 141, Portland Cement Association Research and Development Laboratories, Skokie, Illinois.

    Google Scholar 

  32. Wu, Y. C., andCopeland, L. E.,Thermodynamics of adsorption. Barium-Sulfate-Water System. Solid surfaces and the gas-solid Interface. Advances in Chemistry Series, American Chemical Soc., 1961. Reprinted in Research Department Bulletin 141, Portland Cement Association Research and Development Laboratories, Skokie, Illinois.

    Google Scholar 

  33. Newman, K.,The structure and engineering properties of concrete, Theory of arch dams. Proc. of the international symposium, Southampton, England, Pergamon Press, New York, 1965.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Powers, T.C. The thermodynamics of volume change and creep. Matériaux et Constructions 1, 487–507 (1968). https://doi.org/10.1007/BF02473638

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02473638

Keywords

Navigation