Skip to main content
Log in

Factors in impedance pneumography

  • Published:
Medical and biological engineering Aims and scope Submit manuscript

Abstract

Efforts to calibrate measured transthoracic impedances against pulmonary air volumes have been marginally successful. We devised a new nonhomogeneous analogue of the thorax consisting of two coaxial cylinders with different resistivities and dimensions. Measurements were compared with calculations and found to correlate closely. Then, using the mathematical model and data typical of adult male patients, we calculated the relative contributions of all the factors involved in impedance pneumography. We found that changes in electrode radius, chest-wall resistivity and various thoracic dimensions contribute much more to impedance variations than changes in lung resistivity, and conclude that impedance pneumography only has clinical use as a monitor for respiration rates and apnea.

Sommaire

Les efforts déployés pour calibrer les impédances transthoraciques mesurées par rapport aux volumes d'air pulmonaire n'ont été couronnés due d'un succès relatif. Nous avons mis au point un modèle analogique non homogène du thorax composé de deux cylindres coaxiaux ayant des résistivités et des dimensions différentes. Les mesures obtenues ont été comparées aux calculs entre lesquels il existait une corrélation étroite. Utilisant ensuite un modèle mathématique et des données caractéristiques d'un adulte de sexe masculin, nous avons calculé les contributions relatives de tous les facteurs en jeu dans la pneumographie par impédance. Nous avons observé que les changements dans le rayon des électrodes, dans la résistivité de la paroi thoracique et dans les diverses dimensions de la cage thoracique contribuent beaucoup plus aux variations d'impédance que les changements de résistivité des poumons; nous avons conclu que la pneumographie par impédance n'a une utilisation clinique que dans la mesure où elle peut permettre de surveiller le rythme respiratoire et l'apnée.

Zusammenfassung

Die Bemühungen, gemessene transthorakale Impedanzen auf Grund des Luftvolumens in der Lunge zu eichen, waren nur am Rande erfolgreich. Wir haben ein neues, nicht homogenes Analogmodell des Thorax gefunden, das aus zwei koaxialen Zylindern mit unterschiedlichen spezifischen Widerständen und Abmessungen besteht. Die Messungen wurden mit Berechnungen verglichen und es ergab sich ein enger Zusammenhang. Unter Ver wendung des mathematischen Modells und typischer Werte für männliche Erwachsene berechneten wir die relativen Beiträge aller Faktoren in der Impedanz-Pneumographie. Wir stellten fest daß Änderungen des Elektrodenradius und des spezifischen Widerstands der Brustwand sowie unterschiedliche thorakale Abmessungen mehr zu Impedanzschwankungen beitragen als Änderungen im spezifischen Widerstand der Lunge und schlossen daraus, daß die Impedanz-Pneumographie lediglich klinisch als Monitor für Atmungsgeschwindigkeit und Apnoe eingesetzt werden kann.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allison, R. D., Holmes, E. L. andNyboer, J. (1964) Volumetric dynamics of respiration as measured by impedance pneumography.J. Appl. Physiol. 19, 166–173.

    Google Scholar 

  • Baker, L. E., Geddes, L. A. andHoff, H. E. (1965) Quantitative evaluation of impedance spirometry in man.Am. J. Med. Electron. April–June.

  • Baker, L. E., Geddes, L. A., Hoff, H. E. andChaput, C. J. (1966) Physiological factors underlying transthoracic impedance variations in respiration.J. Appl. Physiol. 21, 1491–1499.

    Google Scholar 

  • Baker, L. E. andHill, D. W. (1969) The use of electrical impedance techniques for the monitoring of respiratory pattern during anaesthesia.Br. J. Anaes. 41, 2.

    Google Scholar 

  • Cooley, W. L. (1970) The parameters of transthoracic electrical conduction. International conference on bioelectrical impedance.Ann. NY. Acad. Sci. 170, 702–713.

    Google Scholar 

  • Cooley, W. L. (1972) The calculation of cardiac stroke volume from variations in transthoracic electrical impedance.Bio-Med. Engng. 316–319.

  • Cooley, W. L. (1972) Electrical impedance fluctuation as an indicator of fluid volume changes in a living organism.,Bio-Med. Engng. 313–315.

  • Geddes, L. A., Hoff, H. E., Hickman, D. M. andMoore, A. G. (1962) The impedance pneumograph.Aerospace med. 33, 1–6.

    Google Scholar 

  • Geddes, L. A. andBaker, L. E. (1967) The specific resistance of biological material—A compendium of data for the biomedical engineer and physiologist.Med. Biol. Engng. 5, 271–293.

    Google Scholar 

  • Geddes, L. A. andBaker, L. E. (1968)Principles of applied biomedical instrumentation. Wiley, New York.

    Google Scholar 

  • Geselowitz, D. B. (1971) An application of electrocardiographic lead theory to impedance plethysmography.IEEE Trans. Bio-Med. Engng. 18, 38–41.

    Google Scholar 

  • Heiland, C. A. (1940)Geophysical exploration. Prentice Hall, New York.

    Google Scholar 

  • Hill, R. V., Jansen, J. C. andFling, J. L. (1967) Electrical impedance pneumography: A critical analysis.J. Appl. Physiol. 22, 161–168.

    Google Scholar 

  • Kinnen, E., Kubichek, W. andTurton, P. (1964) Thoracic cage impedance measurements—Tissue resistivityin vivo and transthoracic impedance at 100 Kc. Tech. Doc. Rep. SAM-TDR-64-5 USAF School of Aerospace Medicine.

  • Kira, S., Hukushima, Y., Kitamura, S. andIto, A. (1971) Transthoracic electrical impedance variations associated with respiration.J. Appl. Physiol. 30, June.

  • Lehr, J. (1972) A vector derivation useful in impedance plethysmographic field calculations.IEEE Trans. Bio-Med. Engng. 19, 156.

    Google Scholar 

  • Noe, F. E., Bhatt, K. andClark, H. W. (1968) Electrical impedance spirometry for monitoring respiration during anaesthesia.Anaesth. & Analgesia 28, March–April.

  • Nyboer, J. et al. (1940) Radiocardiograms: Electrical impedance changes of the heart in relation to electrocardiograms and heart sounds.Proc. J. Soc. Clin. Invest. 19, 963.

    Google Scholar 

  • Pacela, A. F. (1966) Impedance pneumography—A survey of instrumentation techniques.Med. Biol. Engng. 4, 1–15.

    Google Scholar 

  • Pasquali, E. (1967) Problems in impedance pneumography: Electrical characteristics of skin and lung tissue.Med. Biol. Engng. 5, 249–258.

    Google Scholar 

  • Valentinuzzi, M. E., Geddes, L. A. andBaker, L. E. (1971) The law of impedance pneumography.Med. Biol. Engng. 9, 157–163.

    Google Scholar 

  • Victorin, L. andOlsson, T. (1970)Transthoracic impedance. University of Goteborg, Goteborg, Sweden.

    Google Scholar 

  • Wade, O. L. (1954) Movements of the thoracic cage and diaphragm in respiration.J. Physiol. 124, 193–212.

    Google Scholar 

  • Walker, C. H. M. (1969) Impedance respiratory monitoring in the newborn infant.Bio-Med. Engng. 3, 454–459.

    Google Scholar 

  • Yates, J. W. (1970) Effects of limited movement of the impedance plethysmograph signal: A preliminary study. SAM-TR-70-67, USAF School of Aerospace Medicine, Brooks Air Force Base, Texas.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albisser, A.M., Carmichael, A.B. Factors in impedance pneumography. Med. & biol. Engng. 12, 599–605 (1974). https://doi.org/10.1007/BF02477221

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02477221

Keywords

Navigation