Skip to main content
Log in

Particulate size effects in the particle-reinforced metal-matrix composites

  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The influences of particle size on the mechanical properties of the particulate metal matrix composite are obviously displayed in the experimental observations. However, the phenomenon can not be predicted directly using the conventional elastic-plastic theory. It is because that no length scale parameters are involved in the conventional theory. In the present research, using the strain gradient plasticity theory, a systematic research of the particle size effect in the particulate metal matrix composite is carried out. The roles of many composite factors, such as: the particle size, the Young's modulus of the particle, the particle aspect ratio and volume fraction, as well as the plastic strain hardening exponent of the matrix material, are studied in detail. In order to obtain a general understanding for the composite behavior, two kinds of particle shapes, ellipsoid and cylinder, are considered to check the strength dependence of the smooth or non-smooth particle surface. Finally, the prediction results will be applied to the several experiments about the ceramic particle-reinforced metal-matrix composites. The material length scale parameter is predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Christman T, Needleman A, Suresh S. An experimental and numerical study of deformation in metal ceramic composites.Acta Metall Mater, 1989, 37: 3029–3050

    Article  Google Scholar 

  2. Bao G, Hutchinson J W, McMeeking R M. Particle reinforcement of ductile matrices against plastic flow and creep.Acta Metall Mater, 1991, 39: 1871–1882

    Article  Google Scholar 

  3. Corbin S F, Wilkinson D S. The influence of particle distribution on the mechanical response of a particulate metal-matrix composite.Acta Metall Mater 1994, 42: 1311–1318

    Article  Google Scholar 

  4. Boland F, Colin C, Salmon C, et al. Tensile flow properties of Al-based matrix composites reinforced with a random planar network of continuous metallic fibres.Acta Mater, 1998, 46: 6311–6323

    Article  Google Scholar 

  5. Yang J, Cady C, Hu M S, et al. Effects of damage on the flow strength and ductility of a ductile Al-alloy reinforced with SiC particuletes.Acta Metall Mater, 1990, 38: 2613–2619

    Article  Google Scholar 

  6. Kamat S V, Rollett A D, Hirth J P. Plastic-deformation in Al-alloy matrix-alumina particulate composites.Scripta Metall Mater, 1991, 25: 27–32

    Article  Google Scholar 

  7. Lloyd D J. Particle-reinforced aluminum and magnesium matrix composite.Int Mater Rev, 1994, 39: 1–23

    Google Scholar 

  8. Kiser M T, Zok F W, Wilkinson D S. Plastic flow and fracture of a particulate metal matrix composites.Acta Mater, 1996, 44: 3465–3476

    Article  Google Scholar 

  9. Ling Z. Deformation behavior and microstructure effect in 2124Al/SiC P composite.J Comp Mater, 2000, 34: 101–115

    Article  Google Scholar 

  10. Dai L H, Ling Z, Bai Y L. A strain gradient-strengthening law for particle reinforced metal matrix composites.Scripta Mater, 1999, 41: 245–251

    Article  Google Scholar 

  11. Nan C W, Clarke D R. The influence of particle size and particle fracture on the elastic/plastic deformation of metal matrix composites.Acta Mater, 1996, 44: 3801–3811

    Article  Google Scholar 

  12. Maire E, Wilkinson D S, Embury D, et al. Role of damage on the flow and fracture of particulate reinforced alloys and metal matrix composites.Acta Mater, 1997, 45: 5261–5274

    Article  Google Scholar 

  13. Stelmashenko N A, Walls M G, Brown L M, et al. Microindentations on W and Mo oriented single-crystals-an STM study.Acta Metall Mater, 1993, 41: 2855–2865

    Article  Google Scholar 

  14. Ma Q, Clarke D R. Size-dependent hardness of silver single-crystals.J Mater Res, 1995, 10: 853–863

    Google Scholar 

  15. McElhaney K W, Vlassak J J, Nix W D. Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments.J Mater Res, 1998, 13: 1300–1306

    Google Scholar 

  16. Fleck N A, Muller G M, Ashby M F, et al. Strain gradient plasticity-theory and experiment.Acta Metall Mater, 1994, 42: 475–487

    Article  Google Scholar 

  17. Evans A G, Hutchinson J W, Wei Y. Interface adhesion: effects of plasticity and segregation.Acta Mater, 1999, 47: 4093–4113

    Article  Google Scholar 

  18. Fleck N A, Hutchinson J W. Strain gradient plasticity.Adv in App Mech, 1997, 33: 295–361

    MATH  Google Scholar 

  19. Aifantis E C. On the microstructural origin of certain inelastic models.J Eng Mater Tech, 1984, 106: 326–330

    Article  Google Scholar 

  20. Gao Y, Huang Y, Nix W D, et al. Mechanism-based strain gradient plasticity—I., Theory.J Mech Phys Solids, 1999, 47: 1239–1263

    Article  MATH  MathSciNet  Google Scholar 

  21. Wei Y, Hutchinson J W. Steady-state crack growth and work of fracture for solids characterized by strain gradient plasticity.J Mech Phys Solids, 1997, 45: 1253–1273

    Article  MATH  MathSciNet  Google Scholar 

  22. Xia Z C, Hutchinson J W. Crack tip fields in strain gradient plasticity.J Mech Phys Solids, 1996, 44: 1621–1648

    Article  Google Scholar 

  23. Chen J Y, Wei Y, Huang Y, et al. The crack tip fields in strain gradient plasticity: the asymptotic and numerical analyses.Eng Fract Mech, 1999, 64: 625–648

    Article  Google Scholar 

  24. Wei Y, Wang X, Wu X, et al. Theoretical and experimental researches of size effect in micro-indentation test.Science in China (Series A) 2001, 44: 74–82

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The project supported by the National Natural Science Foundation of China (19891180, 19925211) and by the Chinese Academy of Sciences (KJ951-1-201) and “Bai Ren” plan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yueguang, W. Particulate size effects in the particle-reinforced metal-matrix composites. Acta Mech Sinica 17, 45–58 (2001). https://doi.org/10.1007/BF02487769

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02487769

Key Words

Navigation