Skip to main content
Log in

Changes in plant growth processes under microgravity conditions simulated by a three-dimensional clinostat

  • Published:
The botanical magazine = Shokubutsu-gaku-zasshi Aims and scope Submit manuscript

Abstract

We developed a three-dimensional (3-D) clinostat to simulate a microgravity environment and studied the changes in plant growth processes under this condition. The rate of germination of cress (Lepidium sativum), maize (Zea mays), rice (Oryza sativa), pea (Pisum sativum), or azuki bean (Vigna angularis) was not affected on the clinostat. The clinostat rotation did not influence the growth rate of their roots or shoots, except for a slight promotion of growth in azuki roots and epicotyls. On the contrary, the direction of growth of plant organs clearly changed on the 3-D clinostat. On the surface of the earth, roots grow downward while shoots upward in parallel to the gravity vector. On the 3-D clinostat, roots of cress elongated along the direction of the tip of root primordia after having changed the direction continuously. Rice roots also grew parallel to the direction of the tip of root primordia. On the other hand, roots of maize, pea, and azuki bean grew in a random fashion. The direction of growth of shoots was more controlled even on the 3-D clinostat. In a front view of embryos, shoots grew mostly along the direction of the tip of primordia. In a side view, rice coleoptiles showed an adaxial (toward the caryopsis) while coleoptiles of maize and epicotyls of pea and azuki bean an abaxial curvature. The curvature of shoots became larger with their growth. Such an autotropism may have an important role in regulation of life cycle of higher plants under a microgravity environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

3-D:

three-dimensional

References

  • Atwell, B.J., I. Waters andH. Greenway. 1982. The effect of oxygen and turbulence on elongation of coleoptiles of submergence-tolerant and-intolerant rice cultivars. J. Exp. Bot.33: 1030–1044.

    CAS  Google Scholar 

  • Bremekamp, C.E.B. 1925. Das Verhalten der graskeimlinge auf dem Klinostaten. Ber. Deutsch. Bot. Ges.43: 159–165.

    Google Scholar 

  • Brown, A.H., A.O. Dahl andD.K. Chapman. 1976. Limitation on the use of the horizontal clinostat as a gravity compensator. Plant Physiol.58: 127–130.

    PubMed  Google Scholar 

  • Clifford, P.E. 1979. Significance of spontaneous bending during klinostat rotation. Z. Pflanzenphysiol.95: 465–469.

    Google Scholar 

  • Firn, R.D. andA.B. Myers. 1989. Plant movements caused by differential growth-unity or diversity of mechanisms?In P.W. Barlow ed., Differential Growth in Plants, pp. 47–55. Pergamon Press, Oxford.

    Google Scholar 

  • Halstead, T.W. andF.R. Dutcher. 1987. Plants in space. Ann. Rev. Plant Physiol.38: 317–345.

    Article  CAS  Google Scholar 

  • Hensel, W. andT.-H. Iversen. 1980. Ethylene production during clinostat rotation and effect on root geotropism. Z. Pflanzenphysiol.97: 343–352.

    CAS  Google Scholar 

  • — andA. Sievers. 1981. Induction of gravity-dependent plasmatic responses in root statocytes by short time contact between amyloplasts and the distal endoplasmic reticulum complex. Planta153: 303–307.

    Article  Google Scholar 

  • Hoshizaki, T. andK. C. Hamner. 1962. An unusual stem bending response ofXanthium pensylvanicum to horizontal rotation. Plant Physiol.37: 453–459.

    PubMed  CAS  Google Scholar 

  • Hoson, T., S. Kamisaka, Y. Masuda, B. Buchen, A. Sievers andM. Yamashita. 1990a. Gravitropism and ultrastructure of plant roots grown under a simulated microgravity environment. Biol. Sci. Space4: 271–272. (in Japanese).

    Google Scholar 

  • —,—,—,,M., Yamada andM. Yamashita. 1988. Development of 3-D clinostat and its possible use for the analysis of plant growth processes. Proc. Space Util. Symp.5: 52–56. (in Japanese with English abstract).

    Google Scholar 

  • —,—,—,, andM. Yamashita. 1991. Changes in growth and the cell wall of higher plants in a simulated microgravity. Proc. Space Util. Symp.8: 163–168. (in Japanese with English abstract).

    Google Scholar 

  • —,S. Maeda, K. Sakaguchi, H. Onishi andH. Ohta. 1990b. Changes in osmotic pressure and cell wall properties during auxin- and ethylene-induced growth of intact coleoptiles of rice. Physiol. Plant.78: 277–284.

    Article  CAS  Google Scholar 

  • —, andS. Wada 1980. Role of hydroxyproline-rich cell wall protein in growth regulation of rice coleoptiles grown on or under water. Plant Cell Physiol.21: 511–524.

    CAS  Google Scholar 

  • —. 1983. Possible role of hexosamine-containing cell wall component in growth regulation of rice coleoptiles. Plant Cell Physiol.24: 1421–1430.

    CAS  Google Scholar 

  • Ishizawa, K. andY. Esashi. 1984. Gaseous factors involved in the enhanced elongation of rice coleoptiles under water., Plant Cell Environ.7: 239–245.

    CAS  Google Scholar 

  • Iversen, T.-H. andP. Larsen. 1973. Movement of amyloplasts in the statocytes of geotropically stimulated roots. The pre-inversion effect. Physiol. Plant.28: 172–181.

    Article  Google Scholar 

  • Kamisaka, S., K. Nishitani, T. Hoson andY. Masuda. 1988. Growth responses of higher plants to hypo-and hypergravity. Proc. Space Util. Symp.5: 47–51. (in Japanese with English abstract).

    Google Scholar 

  • —,K.-S. Tan, T. Hoson andY. Masuda. 1991. Rice coleoptile growth in air and under water. Physiol. Plant.82: B2.

    Google Scholar 

  • Larsen, P. 1953. Influence of gravity of rate of elongation and on geotropic and autotropic reactions in roots. Physiol. Plant.6: 735–774.

    Article  Google Scholar 

  • — 1957. The development of geotropic and spontaneous curvatures in roots. Physiol. Plant.10: 127–163.

    Article  Google Scholar 

  • — 1962. Geotropism. An introduction.In W. Ruhland, ed., Encyclopedia of Plant Physiology, vol. 17/2, pp. 34–73. Springer-Verlag, Berlin.

    Google Scholar 

  • Leather, G.R., L.E. Forrence andF.B. Abeles 1972. Increased ethylene production during clinostat experiments may cause leaf epinasty. Plant Physiol.49: 183–186.

    PubMed  CAS  Google Scholar 

  • Lorenzi, G. andG. Perbal. 1990. Root growth and statocyte polarity in lentil seedling roots grown in microgravity or on a slowly rotating clinostat. Physiol. Plant.78: 532–537.

    Article  Google Scholar 

  • Nick, P., M. Furuya andE. Schäfer. 1991. Do microtubules control growth in tropism? Experiments with maize coleoptiles. Plant Cell Physiol.32: 999–1006.

    Google Scholar 

  • —, andE. Schäfer. 1989. Nastic response of maize (Zea mays L.) coleoptiles during clinostat rotation. Planta179: 123–131.

    Article  PubMed  CAS  Google Scholar 

  • Ohwaki, Y. 1967. Growth of rice coleoptiles in relation to oxygen concentrations. Sci. Rep. Tohoku Univ. Ser. IV33: 1–5.

    Google Scholar 

  • Palmer, J.H. 1973. Ethylene as a cause of transient petiole epinasty inHelianthus annuus during clinostat experiments. Physiol. Plant.28: 188–193.

    Article  CAS  Google Scholar 

  • Prasad, T.K. andM.G. Cline. 1987. The role of gravity in apical dominance. Effects of clinostating on shoot inversion-induced ethylene production, shoot elongation and lateral bud growth. Plant Physiol.83: 505–509.

    PubMed  CAS  Google Scholar 

  • Raskin, I. andH. Kende. 1983. Regulation of growth in rice seedlings. J. Plant Growth Regul.2: 193–203.

    Article  CAS  Google Scholar 

  • Rasmussen, O., C. Baggerud andT.-H. Iversen. 1989. Preparatory studies for the use of plant protoplasts in space research. Physiol. Plant.76: 431–437.

    PubMed  CAS  Google Scholar 

  • Sachs, J. 1882. Ueber Ausschliessung der geotropischen und heliotropischen Krummungen wahrend des Wachsens. Arb. Botan. Inst. Wurzburg2: 209–225.

    Google Scholar 

  • Shen-Miller, J., R. Hinchman andS.A. Gordon. 1968. Thresholds for georesponse to acceleration in gravity-compensatedAvena seedlings. Plant Physiol.43: 338–344.

    Article  PubMed  Google Scholar 

  • Sievers, A., D. Volkmann, W. Hensel, V. Sobick andW. Briegleb. 1976. Cell polarity in root statocytes in spite of simulated weightlessness. Naturwissenschaften63: 343.

    Article  Google Scholar 

  • Sobick, V. andA. Sievers. 1979. Responses of roots to simulated weightlessness on the fastrotating clinostat.In R. Holmquist, ed., (COSPAR) Life Sciences and Space Research, vol. 17, pp. 285–290. Pergamon Press, Oxford.

    Google Scholar 

  • Takahashi, H., H. Suge andT. Kato. 1991. Growth promotion by vibration at 50 Hz in rice and cucumber seedlings. Plant Cell Physiol.32: 729–732.

    Google Scholar 

  • Volkmann, D., H.M. Behrens andA. Sievers. 1986. Development and gravity sensing of cress roots under microgravity. Naturwissenschaften73: 438–441.

    Article  PubMed  CAS  Google Scholar 

  • Wada, S. 1961. Growth patterns of rice coleoptiles grown on water and under water. Sci. Rep. Tohoku Univ. Ser. IV27: 199–207.

    Google Scholar 

  • Waldron, K.W. andC.T. Brett. 1990. Effects of extreme acceleration on the germination, growth and cell wall composition of pea epicotyls. J. Exp. Bot.41:71–77.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoson, T., Kamisaka, S., Masuda, Y. et al. Changes in plant growth processes under microgravity conditions simulated by a three-dimensional clinostat. Bot Mag Tokyo 105, 53–70 (1992). https://doi.org/10.1007/BF02489403

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02489403

Key words

Navigation