Skip to main content
Log in

Transient thermal behaviour of the primary circuit and the thermal storage tank of a solar-power plant

  • Published:
Il Nuovo Cimento C

Summary

The transient behaviour of the primary circuit of a solarpower plant is studied. The mathematical model used to simulated the circuit is integrated numerically under different operating conditions. The results are discussed in an attempt to gain more insight into the operational problems of this circuit.

Riassunto

Si studia il comportamento transitorio del circuito primario di un impianto per la conversione dell'energia solare. Il modello matematico usato per simulare il circuito è integrato numericamente per differenti condizioni di gestione. Si discutono i risultati al fine di determinare le migliori condizioni operative per questo impianto.

Резюме

псследуется переходное поведение первичной цепи солнечной силовой установки. Математическая моделя, использованная для моделирования цени, интегрируется численно при различных зксплуатационных условнях. Полученные результаты анализируются с целью проникновения в существо зксплуатационных проблемах такой цепи.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C p :

specific heat of the primary fluid

C p :

specific heat of the tube wall material

C pin :

specific heat of the primary fluid at the inlet temperature of the TST

C pt :

specific heat of the primary fluid at the average temperature in the TST

D 1 :

internal diameter of the outer tube of the collector

D a :

external diameter of the outer tube of the collector

D i :

internal diameter of the connecting tubes

d o :

external diameter of the inner tube of the collector

d o :

external diameter of the connecting tubes

F :

brightness factor (=1 for a bright day)

G :

mass velocity of the primary fluid in the connecting tubes

h :

heat transfer coefficient between the primary fluid and the connecting-tube wall

h '' :

heat transfer coefficient between the connecting-tube wall and the surroundings

h c :

heat transfer coefficient between the primary fluid and the collector wall

L p :

length of the collector

P L :

rate of thermal losses from the collector tube wall per unit length

P 8 :

rate of solar energy absorbed by the collector tube wall per unit length

t :

time co-ordinate

T :

temperature of the primary fluid inside the collector

T :

temperature of the primary fluid in the connecting tubes

T in :

temperature of the primary fluid at the inlet of the TST

T s :

temperature of the surroundings

T t :

average temperature in the TST

T w :

collector tube wall temperature

T w :

connecting-tube wall temperature

V :

velocity of the primary fluid in the connecting tubes

V c :

velocity of the primary fluid in the collector

\(\dot V\) :

volumetric flow rate of the primary fluid

W c :

water equivalent of the collector

W t :

water equivalent of the TST

z :

axial co-ordinate measured in the collector

z :

axial co-ordinate measured in the connecting tube

α eff :

effective absorbitivity of the collector defined as the fraction of the incident solar energy absorbed by the collector tube wall

T :

temperature rise along the collector

π:

accumulative collection efficiency

ϱ:

density of the primary fluid

ϱ′:

density of the tube wall material

References

  1. O. Barra, M. Conti, L. Carrera, V. Marinelli andR. Visentin:Nuovo Cimento C,1, 167 (1978).

    ADS  Google Scholar 

  2. Rockwell International Rocketdyne Division:Rocketdyne's dual-medium thermal storage system (S. Francisco, Cal., 1976).

  3. O. Barra, M. Conti, E. Santamato, R. Scarmozzino andR. Visentin:Computer simulation of the performaces of a solar power plant made of linear parabolic concentrators, with a tracking system, at different latitudes, inProceedings of the Conference on the Physics of Solar Energy, LAPSJ, 1977 (Tripoli, 1977).

  4. C. Bellecci, M. Conti, A. Visentin andR. Visentin:Influence of emissivity and pipe size on thermal losses of linear collectors measured under different vacuum conditions, inII International Solar Forum (Hamburg, 1978).

  5. J. H. Perry, Editor:Chemical Engineering Handbook, IV edition (New York, N. Y., 1963).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bellecci, C., Conti, M., El-Sawi, M. et al. Transient thermal behaviour of the primary circuit and the thermal storage tank of a solar-power plant. Il Nuovo Cimento C 3, 123–141 (1980). https://doi.org/10.1007/BF02507139

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02507139

Keywords

Navigation