Skip to main content
Log in

Dual incorporation of (35S)sulfate into dentin proteoglycans acting as mineralization promotors in rat molars and predentin proteoglycans

  • Laboratory Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Autoradiographic investigations were carried out 0.5, 1, 2, 4, 24, 48, 72, and 120 hours after the injection of a single dose of [35S]-sulfate on undermineralized molars of 7–15-day-old rats. In predentin, labeling was detected at 0.5 hours. Silver grain density reached a plateau value between 1 and 24 hours, then decreased and disappeared 120 hours after injection. In dentin, the mineralization front started to be labeled as early as 0.5 hours after injection. Labeling increased at the dentin edge between 1 and 2 hours, reached a maxima at 4 hours, then started to decrease, the labeled band seen 24 hours after injection being further incorporated into dentin. This band stood at constant distance from the dentin-enamel junction with stable grain density, even at 120 hours. This investigation proves the existence of two distinct groups of [35S]-labeled proteoglycans, one exclusively related to predentin and disappearing with time, and the second one located in dentin behaves as a stable component. The fact that an early labeling appeared at the mineralization front which was further incorporated into dentin, confirms that dentin proteoglycans constitute an individual group of molecules that are not derived from predentin proteoglycans, and act as mineralization promotors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Linde A, Goldberg M (1993) Dentinogenesis. Crit Rev Oral Biol Med 4:679–728

    PubMed  CAS  Google Scholar 

  2. Goldberg M, Takagi M (1993) Dentine proteoglycans: composition, ultrastructure and functions. Histochem J 25:781–806

    PubMed  CAS  Google Scholar 

  3. Linde A, Bhown M, Butler WT (1980) Noncollagenous proteins of dentin. A re-examination of proteins from rat incisor dentin utilizing techniques to avoid artifacts. J Biol Chem 255:5931–5942

    PubMed  CAS  Google Scholar 

  4. Rahemtulla F, Prince CW, Butler WT (1984) Isolation and partial characterization of proteoglycans from rat incisors. Biochem J 218:877–885

    PubMed  CAS  Google Scholar 

  5. Steinfort J, Van de Stadt R, Beertsen W (1994) Identification of new rat dentin proteoglycans utilizing C18 chromatography. J Biol Chem 269:22397–22404

    PubMed  CAS  Google Scholar 

  6. Fukae M, Tanabe T, Yamada M (1994) Action of metalloproteinases on porcine dentin mineralization. Calcif Tissue Int 55:426–435

    Article  PubMed  CAS  Google Scholar 

  7. Takagi M, Hishikawa H, Hosokawa Y, Kagami A, Rahemtulla F (1990) Immunohistochemical localization of glycosaminoglycans and proteoglycans in predentin and dentin of rat incisors. J Histochem Cytochem 38:319–324

    PubMed  CAS  Google Scholar 

  8. Prince CW, Rahemtulla F, Butler WT (1984) Incorporation of [35S] sulphate into glycosaminoglycans by mineralized tissue in vivo. Biochem J 224:941–945

    PubMed  CAS  Google Scholar 

  9. Embery G (1974) The isolation of chondroitin 4-[35S]sulphate from the molar teeth of young rats receiving sodium [35S]sulphate. Calcif Tissue Res 14:59–65

    Article  PubMed  CAS  Google Scholar 

  10. Green DRJ, Embery G (1984) Incorporation of inorganic [35S]-sulphate into glycoproteins of rat buccal and palatal minor salivary glands in vivo and in vitro. Arch Oral Biol 29:335–341

    Article  PubMed  CAS  Google Scholar 

  11. Leblond CP, Belanger LF, Greulich RC (1955) Formation of bone and teeth as visualized by autoradiography. Ann NY Acad Sci 60:630–659

    PubMed  CAS  Google Scholar 

  12. Sundström B (1971) New aspects on the utilization of inorganic sulphate during dentin formation. Histochemie 26:61–66

    Article  PubMed  Google Scholar 

  13. Weinstock A (1972) Matrix development in mineralizing tissues as shown by radioautography: formation of enamel and dentin. In: Slavkin HL, Bavetta LA (eds) Developmental aspects of oral biology. Academic Press, New York, London, p 201

    Google Scholar 

  14. Weinstock A, Young RW (1972) Sulfate-35S uptake by the Golgi apparatus of odontoblasts and the migration of label to the mineralization front of dentin. J Cell Biol 55:276a

    Google Scholar 

  15. Goldberg M, Escaig F (1985) Incorporation of (35S)sulfate and (3H)glucosamine into glycosaminoglycans in rat incisor predentine and dentine: comparison by autoradiography of fixation by rapid-freezing, freeze-substitution, and aldehyde fixation. Calcif Tissue Int 37:511–518

    PubMed  CAS  Google Scholar 

  16. Embery G, Smalley JW (1980) The influence of fluoride on the uptake of radiosulphate by rat incisor odontoblasts in vitro. Arch Oral Biol 25:659–662

    Article  PubMed  CAS  Google Scholar 

  17. Smalley JW, Embery G (1980) The influence of fluoride administration on the structure of proteoglycans in the developing rat incisor. Biochem J 190:263–272

    PubMed  CAS  Google Scholar 

  18. Masse R (1978) Action of radiation on nuclear emulsion. J Microsc Biol Cell 27:83–90

    Google Scholar 

  19. Lohmander LS, Hascall VC, Yanagishita M, Kuettner KE, Kimura JH (1986) Post-translational events in proteoglycan synthesis: kinetic of synthesis of chondroitin sulfate and oligosaccharides on the core protein. Arch Biochem Biophys 250:211–227

    Article  PubMed  CAS  Google Scholar 

  20. Campbell SC, Schwartz NB (1988) Kinetics of intracellular processing of chondroitin sulfate proteoglycan core protein and other matrix components. J Cell Biol 106:2191–2202

    Article  PubMed  CAS  Google Scholar 

  21. Graham JM, Winterbourne DJ (1988) Subcellular localization of the sulphatation reaction of heparan sulphate synthesis and transport of the proteoglycan to the cell surface in rat liver. Biochem J 252:437–445

    PubMed  CAS  Google Scholar 

  22. DenBesten PK, Awbrey BJ, Treadwell BV (1989) Similarities between proteinase in secretory enamel matrix and a neutral metalloproteinase found in cartilage. In: Fearnhead RW (ed) Tooth enamel V. Florence Publishers, Yokohama, p 278

    Google Scholar 

  23. Katchburian E, Holt SJ (1968) Ultrastructural studies on lysosomes and acid phosphatase in odontoblasts. In: Symons NBB (ed) Dentin and pulp. Livingstone LTD, Edinburgh, p 43

    Google Scholar 

  24. Goldberg M, Escaig F (1981) Odontoblastes: collagène dans la prédentine et la dentine de l'incisive de rat. Etude par cryofracture Biol Cell 40:203–216

    Google Scholar 

  25. Goldberg M, Septier D (1984) Mise en évidence de lipides par le tétroxyde d'osmium tamponné par de l'imidazole dans les odontoblastes et les cellules de l'organe de l'émail de l'incisive de rat. J Biol Buccale 12:317–330

    PubMed  CAS  Google Scholar 

  26. Weinstock M, Leblond CP (1974) Synthesis, migration and release of precursor collagen by odontoblasts as visualized by radioautography after [3H]proline administration. J Cell Biol 60:92–127

    Article  PubMed  CAS  Google Scholar 

  27. Goldberg M, Septier D, Escaig-Haye F (1987) Glycoconjugates in dentinogenesis and dentin. Progr Histochem Cytochem 17/2:1–113

    Google Scholar 

  28. Goldberg M, Septier D (1983) Electron microscopic visualization of proteoglycans in rat incisor predentine and dentine with cuprolinic blue. Arch Oral Biol 28:79–83

    Article  PubMed  CAS  Google Scholar 

  29. Goldberg M, Septier D (1986) Visualization of proteoglycans and membrane-associated components in rat incisor predentine and dentine using ruthenium hexammine trichloride. Arch Oral Biol 34:205–212

    Article  Google Scholar 

  30. Goldberg M, Escaig F (1984) The appearance in TEM of proteoglycan predentine is fixation dependent. J Microsc 134: 161–167

    PubMed  CAS  Google Scholar 

  31. Baylink D, Wergedal J, Thompson E (1972) Loss of protein-polysaccharides at sites where bone mineralization is initiated. J Histochem Cytochem 20:279–292

    PubMed  CAS  Google Scholar 

  32. Blumenthal NC, Posner AS, Silverman LD, Rosenberg LC (1979) Effect of proteoglycans on in vitro hydroxyapatite formation. Calcif Tissue Int 27:75–82

    Article  PubMed  CAS  Google Scholar 

  33. Chen C-C, Boskey AL (1985) Mechanisms of proteoglycan inhibition of hydroxyapatite growth. Calcif Tissue Int 37:395–400

    PubMed  CAS  Google Scholar 

  34. Chen C-C, Boskey AL, Rosenberg LC (1984) The inhibitory effect of cartilage proteoglycans on hydroxyapatite growth. Calcif Tissue Int 36:285–290

    Article  PubMed  CAS  Google Scholar 

  35. Dean DD, Schwartz Z, Muntz OE, Gomez R, Swain LD, Howell DS, Boyan BD (1992) Matrix vesicles are enriched in metalloproteinases that degrade proteoglycans. Calcif Tissue Int 50:342–349

    Article  PubMed  CAS  Google Scholar 

  36. Dean DD, Schwartz Z, Bonewald L, Muntz OE, Morales S, Gomez R, Brooks BP, Qiao M, Howell DS, Boyan BD (1994) Matrix vesicles produced by osteoblast-like cells in culture become significantly enriched in proteoglycan-degrading metalloproteinases after addition of β-glycerophosphate and ascorbic acid. Calcif Tissue Int 54:399–408

    Article  PubMed  CAS  Google Scholar 

  37. Takeuchi Y, Matsumoto T, Ogata E, Shishiba Y (1990) Isolation and characterization of proteoglycans synthetized by mouse osteoblastic cells in culture during the mineralization process. Biochem J 266:15–24

    PubMed  CAS  Google Scholar 

  38. Hunter GK, Wong KS, Kim JJ (1988) Binding of calcium to glycosaminoglycans: an equilibrium dialysis study. Arch Biochem Biophys 260:161–167

    Article  PubMed  CAS  Google Scholar 

  39. Hunter GK (1991) Role of proteoglycan in the provisional calcification of cartilage. Clin Orthop 262:256–280

    PubMed  Google Scholar 

  40. Linde A, Lussi A, Crenshaw MA (1989) Mineral induction by immobilized polyanionic proteins. Calcif Tissue Int 44:286–295

    PubMed  CAS  Google Scholar 

  41. Plate U, Höhling HJ, Reimer L, Barckhaus RH, Wienecke R, Wiessmann HP, Boyde A (1992) Analysis of the calcium distribution in predentine by EELS and of the early crystal formation in dentine by ESI and ESD. J Microscopy 166:329–341

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lormée, P., Septier, D., Lécolle, S. et al. Dual incorporation of (35S)sulfate into dentin proteoglycans acting as mineralization promotors in rat molars and predentin proteoglycans. Calcif Tissue Int 58, 368–375 (1996). https://doi.org/10.1007/BF02509387

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02509387

Key words

Navigation