Skip to main content
Log in

Probabilistic prediction of the crack resistance of nuclear pressure vessel steels on the basis of a local approach. Part 1

  • Scientific and Technical Section
  • Published:
Strength of Materials Aims and scope

Abstract

We analyze the stochastic nature of various critical parameters responsible for the brittle fracture of nuclear pressure vessel steels. It is shown that the critical stress of brittle fracture Sc governing the process of propagation of shear microcracks can be regarded (with sufficient accuracy) as a deterministic parameter. At the same time, the critical parameter controlling the process of initiation of microcracks should be regarded as stochastic. On the basis of the performed analysis, we modify our local criterion of brittle fracture proposed earlier to the case of probabilistic statement of the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. M. Beremin, “A local criterion for cleavage fracture of a nuclear pressure vessel steel,”Met. Trans.,14A, 2277–2287 (1983).

    CAS  Google Scholar 

  2. J. F. Knott,Fundamentals of Fracture Mechanics, London, Butterworths (1973).

    Google Scholar 

  3. B. Z. Margolin and V. A. Shvetsova, “Criterion of brittle fracture: physicomechanical approach,”Probl. Prochn., No. 2, 3–16 (1992).

    Google Scholar 

  4. B. Z. Margolin, V. A. Shvetsova, and G. P. Karzov, “Brittle fracture of nuclear pressure vessel steels. Part 1. Local criterion for cleavage fracture,”Int. J. Pres. Ves. Piping,72, 73–87 (1997).

    Article  CAS  Google Scholar 

  5. B. Z. Margolin, G. P. Karzov, and V. A. Shvetsova, “Brittle fracture of nuclear pressure vessel steels. Part 2. Prediction of fracture toughness,”Int. J. Pres. Ves. Piping,72, 89–96 (1997).

    Article  CAS  Google Scholar 

  6. N. N. Davidenkov,Dynamic Testing of Materials [in Russian], ONTI, Moscow (1936).

    Google Scholar 

  7. A. Ya. Krasovskii,Brittleness of Metals at Low Temperatures [in Russian], Naukova Dumka, Kiev (1980).

    Google Scholar 

  8. L. A. Kopel’man,Resistance of Welded Joints to Brittle Fracture [in Russian], Mashinostroenie, Leningrad (1978).

    Google Scholar 

  9. G. J. Hahn and S. Shapiro,Statistical Models in Engineering, Wiley, New York (1967).

    Google Scholar 

  10. V. V. Rybin,High Plastic Strains in Metals [in Russian], Metallurgiya, Moscow (1986).

    Google Scholar 

  11. J. V. Fernandes and J. -H. Schmit, “Dislocation microstructures in steel during deep drawing,”Phil. Mag.,4A (6), 841–870 (1983).

    Google Scholar 

  12. V. Ya. Baranov,Influence of Structural Inhomogeneities and External Loading Factors on the Shear Resistance of Structural Steels [in Russian], Author’s Abstract of the Candidate Degree Thesis (Technical Sciences), Kiev (1986).

  13. A. N. Cottrel, “Theory of brittle fracture in steel and similar metals,”Trans. AIME,212, 192–203 (1958).

    Google Scholar 

  14. K. Wallin, T. Saario, and K. Törrönen, “Statistical model for carbide induced brittle fracture in steel,”Met. Sci.,18, 13–16 (1984).

    Article  CAS  Google Scholar 

  15. C. J. McMahon and M. Cohen, “Initiation of cleavage in polycrystalline iron,”Acta Met.,13, 591–604 (1965).

    Article  CAS  Google Scholar 

  16. T. C. Lindley and C. E. Richards, “The effect of quench-aging on the cleavage fracture of low-carbon iron,”Met. Sci.,4, No. 5, 81–84 (1970).

    CAS  Google Scholar 

  17. W. A. Weibull, “A statistical theory of strength of materials,”Roy. Swed. Inst. Eng. Res.,151, 5–45 (1939).

    Google Scholar 

  18. A. Seeger, “Mechanism of sliding and hardening in face-centered cubic and hexagonal close packed metals,” in: M. V. Klassen-Neklyudova and V. L. Indenbom, eds.,Dislocations and Mechanical Properties of Crystals [in Russian], Inostr. Lit., Moscow (1960), pp. 179–268.

    Google Scholar 

  19. R. Berner and H. Kronmüller,Plastische Verformung von Einkristallen, Springer-Verlag, Berlin (1965).

    Google Scholar 

  20. V. D. Yaroshevich and D. G. Ryvkina, “Influence of the structure on the activating parameters of the process of deformation of Armco iron at low temperatures,”Fiz. Met. Metalloved.,31, No. 6, 1293–1298 (1971).

    CAS  Google Scholar 

  21. V. I. Kostylev and V. Z. Margolin, “Solution of an elastoplastic problem of dynamic fracture mechanics by the finite-element method,”Probl. Prochn., No. 7, 6–12 (1990).

    Google Scholar 

  22. G.P. Karzov, B. T. Timofeev, and V. P. Leonov,Welded Pressure Vessels: Strength and Durability [in Russian], Mashinostroenie, Leningrad (1982).

    Google Scholar 

  23. Yu. F. Balandin, I. V. Gorynin, Yu. I. Zvezdin, et al.,Structural Materials of Nuclear Power Plants [in Russian], Énergoatomizdat, Moscow (1984).

    Google Scholar 

  24. G. P. Karzov, B. Z. Margolin, and V. A. Shvetsova,Physicomechanical Simulation of Fracture Processes [in Russian], Politekhnika, St. Petersburg (1993).

    Google Scholar 

  25. B. Z. Margolin, G. P. Karzov, V. A. Shvetsova, and V. I. Kostylev, “Modelling for transcrystalline and intercrystalline fracture by void nucleation and growth,”Fatigue Fract. Eng. Mater. Struct., 21, No. 2, 123–138 (1998).

    Article  CAS  Google Scholar 

Download references

Authors

Additional information

TsNII KM “Prometei,” St. Petersburg, Russia. Translated from Problemy Prochnosti, No. 1, pp. 5–20, January–February, 1999.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Margolin, B.Z., Gulenko, A.G. & Shvetsova, V.A. Probabilistic prediction of the crack resistance of nuclear pressure vessel steels on the basis of a local approach. Part 1. Strength Mater 31, 1–12 (1999). https://doi.org/10.1007/BF02509734

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02509734

Keywords

Navigation