Skip to main content
Log in

Assessment of conventional elastic limit for a hard WC-Co alloy in tension

  • Scientific and Technical Section
  • Published:
Strength of Materials Aims and scope

Abstract

This paper presents an algorithm for the calculation of a conventional elastic limit for WC-Co alloy in tension considering residual thermal stresses in its phases. The algorithm is based on equations of thermoelasticity for two-phase composite materials. Comparison of theoretical and experimental results revealed their fair agreement. Residual thermal stresses were found to have an appreciable effect on the elastic limit of a hard alloy in tension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. P. Bondarenko and N. V. Litoshenko, “Determination of residual thermal stresses average over the bulk in hard alloy phases,”Sverkhtv. Mater., No. 3, 39–43 (1998).

    Google Scholar 

  2. A. Otsuka, K. Togo, and T. Tagawa, “Analysis of residual stresses after sintering, and microstresses and microstrains in a WC-Co hard alloy under uniaxial tensile load,”Trans. Jap. Soc. Mech. Eng.,53, No. 495, 1969–1976 (1987).

    CAS  Google Scholar 

  3. L. P. Khoroshun “Statistical Mechanics and Efficient Properties of Materials,” in:Mechanics of Composites (Ed. A. N. Guz) [in Russian], Vol. 3, Naukova Dumka, Kiev (1993).

    Google Scholar 

  4. G. V. Samsonov, V. K. Vitryanyuk, and F. I ChaplyginTungsten Carbides [in Russian], Naukova Dumka Kiev (1974).

    Google Scholar 

  5. V. I. Tumanov,The Properties of Alloys of the System Tungsten Carbide-Cobalt [in Russian], Metallurgiya, Moscow (1971).

    Google Scholar 

  6. M. H. Poech, H. F. Fischmeister, and R. Spiegler, “Assessment of the in situ flow properties of the cobalt phase in WC-Co hard metals,”J. Hard Mater.,2, No. 3-4, 197–205 (1991).

    CAS  Google Scholar 

  7. B. Roebuck and E. G. Bennett, “Phase size distribution in WC-Co hardmetal,”Metallography,19, No. 1, 27–47 (1986).

    Article  CAS  Google Scholar 

  8. Z. Hashin and S. Shtrikman, “A variational approach to the theory of the elastic behavior of multiphase materials,”J. Mech. Phys. Solids.,11, 127–140 (1963).

    Article  Google Scholar 

  9. H. Doi, Y. Fujiwara, K. Miyake, et al., “A systematic investigation of elastic moduli of WC-Co alloys,”Metall. Trans.,1, No. 5, 1417–1425 (1970).

    CAS  Google Scholar 

  10. H. Bock, H. Hoffmann, and H. Blumenauer, “Eigenspannungen in Werkstoffen mit heterogenen Gefugeaufbau-hergestellt am Beispiel der Wolframkarbid-Kobalt-Legierungen,”Wiss. Z. Techn. Hochsch. Magdeburg,19, No. 4, 289–296 (1975).

    CAS  Google Scholar 

  11. H. E. Exner, “Physical and chemical nature of cemented carbides,”Int. Mater. Rev.,24, No. 2, 149–173 (1979).

    CAS  Google Scholar 

  12. G. S. Kreimer,Strength of Hard Alloys [in Russian], Metallurgiya, Moscow (1971).

    Google Scholar 

  13. J. Gurland and N. M. Parih, “Microstructural aspects of fracture of two-phase alloys,” in:Fracture and Advanced Treatise (Ed. H. Liebowitz), Vol. 7, Academic Press, New York, London (1972).

    Google Scholar 

  14. H. Bock, H. Hoffmann, and H. Blumenauer, “Mechanische Eigenschaften von Wolframkarbid-Kobalt-Legierungen,”Technik,31, No. 1, 47–51 (1976).

    CAS  Google Scholar 

  15. B. Roebuck and E. A. Almond, “Deformation and fracture processes and the physical metallurgy of WC-Co hardmetals,”Int. Mater. Rev.,33, No. 2, 90–110 (1988).

    CAS  Google Scholar 

Download references

Authors

Additional information

Institute of Superhard Materials, National Academy of Sciences of Ukraine, Kiev, Ukraine. Translated from Problemy Prochnosti, No. 6, pp. 116–122, November–December, 1999.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Litoshenko, N.V. Assessment of conventional elastic limit for a hard WC-Co alloy in tension. Strength Mater 31, 611–615 (1999). https://doi.org/10.1007/BF02510897

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02510897

Keywords

Navigation