Skip to main content
Log in

Probabilistic prediction of the crack resistance of nuclear pressure-vessel steels on the basis of a local approach. Part 2

  • Scientific and Technical Section
  • Published:
Strength of Materials Aims and scope

Abstract

On the basis of a new local probabilistic criterion of brittle fracture, a local criterion of ductile fracture proposed by the authors earlier, and the obtained approximate solution of the problem of stress-strain state near the crack tip, we develop a probabilistic model for the prediction of the crack resistance of pressure-vessel steels. The model enables one to predict the dependence of K Ic on temperature for any given probability of brittle fracture and the influence of the thickness of the specimen on K Ic. Bu using this model, we can also describe the temperature range of the brittle-ductile transition. The results of numerical calculations are compared with the experimental data for 15Kh2MFA pressure-vessel steel. It is shown that the proposed model fairly well describes the spread in the experimental data on the crack resistance of this type of steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Z. Margolin, A. G. Gulenko, and V. A. Shvetsova, “Probabilistic prediction of the crack resistance of nuclear pressure-vessel steels on the basis of a local approach. Part 1,”Probl. Prochn., No. 1, 5–20 (1999).

    Google Scholar 

  2. B. Z. Margolin, G. P. Karzov, and V. A. Shvetsova, “Brittle fracture of nuclear pressure-vessel steels. Part 2. Prediction of fracture toughness,”Int. J. Pres. Ves. Piping,72, 89–96 (1997).

    Article  CAS  Google Scholar 

  3. R. M. McMeeking, “Finite deformation analysis of crack tip opening in elastic-plastic materials and implications for fracture initiation,”J. Mech. Phys. Solids,25, 357–381 (1997).

    Article  Google Scholar 

  4. J. R. Rice and M. A. Johnson, “The role of large crack tip geometry changes in plane strain fracture,” in:Inelastic Behavior of Solids, McGraw-Hill, New York (1970), pp. 641–672.

    Google Scholar 

  5. J. R. Rice and G. F. Rosengren, “Plane strain deformation near a crack tip in hardening materials,”J. Mech. Phys. Solids,16, 1–12 (1968).

    Article  Google Scholar 

  6. J. W. Hutchinson, “Singular behavior at the end of a tensile crack in hardening materials,”J. Mech. Phys. Solids,16, 13–31 (1968).

    Article  Google Scholar 

  7. L. M. Kachanov,Fundamentals of the Theory of Plasticity [in Russian], Nauka, Moscow (1969).

    Google Scholar 

  8. I. R. Dixon, “Stress and strain distributions around cracks in sheet material having various work-hardening characteristics,”Eng. Fract. Mech.,1, 224–244 (1965).

    CAS  Google Scholar 

  9. R. Hill,The Mathematical Theory of Plasticity, Clarendon, Oxford (1950).

    Google Scholar 

  10. G. P. Karzov, B. Z. Margolin, and V. A. Shvetsova,Physicomechanical Simulation of Fracture Processes [in Russian], Politekhnika, St. Petersburg (1993).

    Google Scholar 

  11. Y. Neuber,Kerbspannungslehre, Springer, Berlin (1958).

    Google Scholar 

  12. L. A. Kopel'man,Resistance of Welded Joints to Brittle Fracture [in Russian], Mashinostroenie, Leningrad (1978).

    Google Scholar 

  13. B. Z. Margolin, G. P. Karzov, V. A. Shvetsova, and V. I. Kostylev, “Modelling for transcrystalline and intercrystalline fracture by void nucleation and growth,”Fatigue Fract. Eng. Mater. Struct.,21, No. 2, 123–138 (1998).

    Article  CAS  Google Scholar 

  14. F. M. Beremin, “A local criterion for cleavage fracture of a nuclear pressure-vessel steel,”Met. Trans.,14A, 2277–2287 (1983).

    CAS  Google Scholar 

  15. K. Wallin, “The size effect inK I c results,”Eng. Fract. Mech.,22, 149–163 (1985).

    Article  Google Scholar 

  16. G. P. Karzov, B. T. Timofeev, and V. P. Leonov,Welded Pressure Vessels: Strength and Durability [in Russian], Mashinostroenie, Leningrad (1982).

    Google Scholar 

  17. H. -Chr. Zeislmair, “Factors affecting fracture toughness,” in:Werkstoffkunde Eisen und Stahl. Teil I: Grundlagen der Festigkeit, der Zähigkeit und des Bruchs, Verlag Stahleisen, Düsseldorf (1983), pp. 332–369.

    Google Scholar 

  18. J. Landes and D. McGabe, “The effect of section size on the transition temperature behavior of structural steels,” Westinghouse Scientific Paper 82-1D7-METAL-P2 (1982).

  19. Yu. F. Balandin, I. V. Gorynin, Yu. I. Zvezdin, et al.,Structural Materials of Nuclear Power Plants [in Russian], Énergoatomizdat, Moscow (1984).

    Google Scholar 

  20. G. J. Hahn and S. Shapiro,Statistical Models in Engineering, Wiley, New York (1967).

    Google Scholar 

  21. A. Rosenfield and D. Shetty, “Lower-bound fracture toughness of a reactor-pressure-vessel steel,”Eng. Fract. Mech.,14, 833–842 (1981).

    Article  Google Scholar 

  22. J. Landes and D. McGabe, “Statistical characterization of fracture in the transition region,” Westinghouse Scientific Paper 79-1D3-JINTF-P4 (1979).

  23. K. Ando, K. Magani, and K. Tuji, “Probabilistic aspects of cleavage crack initiation sites and fracture toughness,”Fatigue Fract. Eng. Mater. Struct.,15, 1171–1184 (1992).

    CAS  Google Scholar 

  24. K. Wallin, “The scatter inK Ic results,”Eng. Fract. Mech.,19, 1085–1093 (1984).

    Article  Google Scholar 

  25. J. F. Knott,Fundamentals of Fracture Mechanics, Butterworths, London (1973).

    Google Scholar 

  26. A. Ya. Krasovskii,Brittleness of Metals at Low Temperatures [in Russian], Naukova Dumka, Kiev (1980).

    Google Scholar 

  27. B. Z. Margolin and V. A. Shvetsova, “A criterion of brittle fracture: Physicomechanical approach,”Probl. Prochn., No.2, 3–16 (1992).

    Google Scholar 

  28. B. Z. Margolin, V. A. Shvetsova, and G. P. Karzov, “Brittle fracture of nuclear pressure-vessel steels. Part 1. Local criterion of cleavage fracture,”Int. J. Pres., Ves. Piping,72, 73–87 (1997).

    Article  CAS  Google Scholar 

  29. B. Z. Margolin, V. A. Shvetsova, and A. Ya. Varovin, “Preliminary compression of a material as a factor of changes in the mechanism of brittle fracture of bcc metals,”Probl. Prochn., No.4, 5–18 (1996).

    Google Scholar 

  30. B. Z. Margolin and V. A. Shvetsova, “Local criterion for cleavage fracture: structural and mechanical approach,”J. Phys. IV,6, 225–234 (1996).

    Google Scholar 

Download references

Authors

Additional information

TsNII KM “Prometei,” St. Petersburg, Russia. Translated from Problemy Prochnosti, No. 2, pp. 5–22, March–April, 1999.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Margolin, B.Z., Gulenko, A.G. & Shvetsova, V.A. Probabilistic prediction of the crack resistance of nuclear pressure-vessel steels on the basis of a local approach. Part 2. Strength Mater 31, 107–119 (1999). https://doi.org/10.1007/BF02511100

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02511100

Keywords

Navigation