Skip to main content
Log in

Reduced-stiffness method in the theory of smooth shells and the classical analysis of stability (review)

  • Scientific and Technical Section
  • Published:
Strength of Materials Aims and scope

Abstract

We present a promising method for the investigation of the load-carrying capacity of imperfect shells based on simple analytic approaches. This method is called the reduced-stiffness method. In many cases, it enables one to obtain analytic relations for the estimation of the lower bounds of buckling loads for actual shells. We present the exact lower bounds of the buckling loads for compressed smooth cylindrical shells. For comparison, we also used the classical approach to the analysis of the critical loads for shells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. G. A. Croll and G. D. Gavrilenko, “Justification of the reduced-stiffness method”,Probl. Prochn., No. 5, 39–58 (1998).

    Google Scholar 

  2. É. I. Grigolyuk and V. V. Kabanov,Stability of Shells [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  3. A. N. Guz',Fundamentals of the Three-Dimensional Theory of Stability of Deformable Bodies [in Russian], Vyshcha Shkola, Kiev (1986).

    Google Scholar 

  4. R. C. Tennyson,An Experimental Investigation of the Buckling of Circular Cylindrical Sheels in Axial Compression Using the Photoelasticity Technique, Rept. 102, University of Toronto, Inst. for Aerospace Studies, Nov. 1964.

  5. W. T. Koiter,The Effect of Axisymmetric Imperfections on the Buckling of Cylindrical Shells under Axial Compression, TR-6-90-63-86, Lockheed.

  6. I. Elishakoff, “Stochastic simulation of an initial imperfection data bank for isotropic shells with general imperfections,” in:Buckling of Structures, Studies in Applied Mechanics, Elsevier, Amsterdam (1988), pp. 195–209.

    Google Scholar 

  7. K. Ikeda and K. Murota, “Computation of critical initial imperfection of truss structures,”,J. Eng. Mech., ASCE,116, No. 10, 2101–2117 (1990).

    Google Scholar 

  8. J. Arbocz and C. D. Babcock,Utilization of STAGS to determine knock-down factors from measured initial imperfections, Department of Aerospace Engineering, Delft University of Technology, Report LR-275 (1978).

  9. J. Singer, “Buckling experiments on shell—a review of recent developments,” Euromech Colloquium 128:Stability, Buckling, and Postbuckling Behavior; Foundations and Analysis, Delft (1980).

  10. Det Norske Veritas,Rules for the Design, Construction and Inspection of Offshore Structures, Appendix C, Steel Structures, Oslo (1977).

    Google Scholar 

  11. The American Society of Mechanical Engineers, 1980 Code Cases. Nuclear Components, Case N-284, New York (1980).

  12. British Standards Institution, Specification for Unfired Fusion Welded Pressure Vessels, London (1976).

  13. Det Norske Veritas,Rules for the Design, Construction and Inspection of Offshore Structures, Appendix C, Steel Structures, Oslo (1979).

    Google Scholar 

  14. G. D. Gavrilenko, “Stability of smooth and ribbed axisymmetric shells of revolution in the inhomogeneous stress-strain state (Review),”Prikl. Mekh.,31, No. 7, 3–25 (1995).

    Google Scholar 

  15. J. G. A. Croll, “Towards simple estimates of shell buckling loads,”Der Stahlbau, Part I: 8, 243–248, Part II: 9, 283–285 (1975).

    Google Scholar 

  16. J. G. A. Croll and A. Y. Chilver, “Approximate estimates of the stability of cooling towers under wind loading,” IASS Colloq. on the Structural Design of Cooling Towers, May 1971, Bruxelles (1971).

  17. J. G. A. Croll, “Incorporating the mechanics of shell postbuckling in design,” in: Proc. of the 11th Australasian Conf. on Mech. Struct. Materials (August 1988), Auckland, New Zealand (1988), pp. 255–262.

  18. R. C. Batista and J. G. A. Croll, “A design approach for unstiffened cylindrical shells under external pressure,” Paper Pres. at Internat. Conf. on Thin-Walled Structures (April 1979, Univ. of Strathclyde), Crosby-Lockwood, Glasgow (1979), pp. 299–319.

  19. H. Fritz and U. Wittick,Stability of Flat Frameworks [in German], Tech. -Wiss. Mitteilung Nr. 74-6 des Inst. F. Konstr. Ing. Bau der Ruhr. Universität, Bochum (1974).

  20. W. H. Wittick, “Post-buckling behavior and imperfection sensitivity of cooling tower shells,” in: Internat. Symp. on Very Tall Reinforced Concrete Cooling Towers, IASS (November 1978, Paris), Paris (1978).

  21. L. H. Donnell, “A new theory for the buckling of thin cylinders under axial compression and bending”,Trans. Am. Soc. Mech. Eng., Ser. E,56, 795–804 (1934).

    Google Scholar 

  22. B. O. Almroth, “Post-buckling behavior of axially compressed circular cylinders,”J. Amer. Inst. Aeronaut. Astronaut.,1, 630 (1963).

    Google Scholar 

  23. J. Arbocz and E. E. Sechler, “On buckling of axially compressed imperfect cylindrical shells,”J. Appl. Mech.,41, 737 (1974).

    Google Scholar 

  24. M. Esslinger and B. Geier, “Calculated post-buckling loads as lower limits for the buckling loads of thin-walled circular cylinders,” in: B. Budanski (ed.), Proc. of the IUTAM Symp. on Buckling of Structures (June 1974, Cambridge, Mass.), Springer, Berlin (1976).

    Google Scholar 

  25. T. Karman, von, “The buckling of thin cylindrical shells under axial compression,”J. Aero. Sci.,8, 303 (1941).

    Google Scholar 

  26. R. C. Batista,Lower Bound Estimates for Cylindrical Shell Buckling, Ph.D. Dissertation, University of London (1979).

  27. C. P. Ellinas, R. C. Batista, and J. G. A. Croll, “Overall buckling of stringer stiffened cylinders”,Proc. Inst. Civil Engineers,71, Pt. 2, 479–512 (1981).

    Google Scholar 

  28. J. M. Hedgepetii and D. B. Hall, “Stability of stiffened cylinders,”J. Am. Inst. Aeronaut. Astronaut.,3, No. 12, 2275 (1965).

    Google Scholar 

  29. J. Singer, “The influence of stiffener geometry and spacing on the buckling of axially compressed cylindrical and conical shells,” in:Theory of Thin Shells, Springer, Berlin (1969), pp. 234–263.

    Google Scholar 

  30. T. Weller and J. Singer, “Experimental studies on the buckling under axial compression of integrally stringer stiffened circular cylindrical shells,”J. Appl. Mech.,44, No. 4, 721–730 (1977).

    Google Scholar 

  31. J. W. Hutchinson and W. T. Koiter, “Post-buckling theory,”Appl. Mech. Rev.,23, No. 12, 1353–1366 (1970).

    Google Scholar 

  32. V. Tvergaard, “Buckling behavior of plate and shell structures,” in: W. T. Koiter (ed.),Theoretical and Applied Mechanics, North-Holland, Amsterdam (1976), pp. 233–247.

    Google Scholar 

  33. R. C. Tennyson, “The effect of shape imperfections and stiffening on the buckling of circular cylinders,” in: B. Budanski (ed.), Proceedings of the IUTAM Symposium on Buckling of Structures (June 1974, Cambridge, Mass.), Springer, New York (1976), pp. 251–273.

    Google Scholar 

  34. A. Samuelson and P. Vestergren,Analysis of Axially Loaded Stringer Stiffened Circular Cylinders, Aeronautical Research Institute of Sweden, Stockholm, Technical Note HU-2134 (1979).

  35. J. W. Hutchinson and J. C. Amazigo, “Imperfection sensitivity of eccentrically stiffened cylindrical shells,”J. Amer. Inst. Aeronaut. Astronaut.,5, No. 3, 392–401 (1967).

    Google Scholar 

  36. J. W. Hutchinson and J. C. Frauenthal, “Elastic post-buckling behavior of stiffened and barreled cylindrical shells,”J. Appl. Mech.,36, Ser. E, No. 4, 784–790 (1969).

    Google Scholar 

  37. R. Milligan et al.,General Instability of Orthotropically Stiffened Cylinders, Wright-Patterson Air Force Base, AFFDL TR 65-161, Concord, Mass. (1965).

  38. B. O. Almroth et al., “Design criteria for axially loaded cylindrical shells,”J. Spacecr. Rockets,7, No. 6, 714–720 (1970).

    Article  Google Scholar 

  39. G. D. Gavrilenko,Stability of Ribbed Cylindrical Shells in the Inhomogeneous Stress-Strain State [in Russian], Naukova Dumka, Kiev (1989).

    Google Scholar 

  40. J. G. A. Croll, “Model of interactive buckling of stiffened plates,”J. Eng. Mech., Div. ASCE,101, EM 5, 575–591 (1975).

    Google Scholar 

  41. S. E. Svenson and J. G. A. Croll, “Interaction between local and overall buckling,”Int. J. Mech. Sci.,17, 307–321 (1975).

    Article  Google Scholar 

  42. W. C. Fok et al., “Buckling of locally imperfect stiffeners in plates,”J. Eng. Mech. Div. ASCE,103, EM 5, 895–911 (1977).

    Google Scholar 

  43. J. M. N. Thompson et al., “An experimental study of imperfection sensitivity in the buckling of stiffened plates,” in:Buckling of Structures, B. Budanski (ed.), Proceedings of the IUTAM Symp. (June 1974, Harvard, Cambridge, Mass.), Springer, Berlin (1976), p. 149.

    Google Scholar 

  44. J. G. A. Croll and R. A. Batista, “Explicit lower bounds for the buckling of axially loaded cylinders,”Int. J. Mech. Sci. 23, No. 6, 331–343 (1981).

    Article  Google Scholar 

  45. C. P. Ellinas and J. G. A. Croll,Experimental and Theoretical Correlations for Axially Compressed Ring Stringer Shells, London Centre for Marine Technology London (1981);J. Strain Anal.,18, No. 2 (1983).

    Google Scholar 

  46. J. G. A. Croll and A. C. Walker,Elements of Structural Stability, Macmillan, London (1972).

    Google Scholar 

  47. J. M. T. Thompson and G. W. Hunt,General Theory of Elastic Stability, Wiley, London (1973).

    Google Scholar 

  48. R. C. Batista and J. G. A. Croll, “A design approach for axially compressed unstiffened cylinders,” in: T. H. Richards and P. Stanley (eds.), Inst. of Physics Conf. “Stability Problems in Engineering Structures and Components” (September 1978, University College, Cardiff), Applied Science Publishers, London (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Problemy Prochnosti, No. 2, pp. 45–66, March–April, 1999.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Croll, J.G.A., Gavrilenko, G.D. Reduced-stiffness method in the theory of smooth shells and the classical analysis of stability (review). Strength Mater 31, 138–154 (1999). https://doi.org/10.1007/BF02511103

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02511103

Keywords

Navigation