Skip to main content
Log in

Enhanced germination under high-salt conditions of seeds of transgenicArabidopsis with a bacterial gene (codA) for choline oxidase

  • JPR Symposium
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Arabidopsis thaliana was transformed previously with thecodA gene from the soil bacteriumArthrobacter globiformis. This gene encodes choline oxidase, the enzyme that converts choline to glycinebetaine. Transformation with thecodA gene significantly enhanced the tolerance of transgenic plants to low temperature and high-salt stress. We report here that seeds of transgenic plants that expressed thecodA gene were also more tolerant to salt stress during germination than seeds of non-transformed wild-type plants. Seedlings of transgenic plants grew more rapidly than those of wild-type plants under salt-stress conditions. Furthermore, exogenously applied glycinebetaine was effective in alleviating the harmful effects of salt stress during germination of seeds and growth of young seedlings, a result that suggests that it was glycinebetaine that had enhanced the tolerance of the transgenic plants. These observations indicate that synthesis of glycinebetaine in transgenic plantsin vivo, as a result of the expression of thecodA gene, might be veryuseful in improving the ability of crop plants to tolerate salt stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • alia, Hayashi, H., Chen, T.H.H. and Murata, N. 1998. Transformation with a gene for choline oxidase enhanced the cold tolerance ofArabidopsis during germination and early growth. Plant Cell Environ. in press.

  • Bernard, T., Ayache, M. andRudulier, D.L. 1988. Restoration of growth and enzymic activities ofEscherichia coli Lac mutants by glycine betaine. C.R. Acad. Sci. III.307: 99–104.

    PubMed  CAS  Google Scholar 

  • Boyer, J.S. 1982. Plant productivity and environment. Science218: 443–448.

    Article  PubMed  Google Scholar 

  • Coughlan, S.J. andHeber, U. 1982. The role of glycinebetaine in the protection of spinach thylakoids against freezing stress. Planta156: 62–69.

    Article  CAS  Google Scholar 

  • Csonka, L.N. 1989. Physiological and genetic responses of bacteria to osmotic stress. Microbiol. Rev.53: 121–147.

    PubMed  CAS  Google Scholar 

  • Deshnium, P., Gombos, Z., Nishiyama, Y. andMurata, N. 1997. The actionin vivo of glycine betaine in enhancement of tolerance ofSynechococcus sp. strain PCC 7942 to low temperature. J. Bacteriol.179: 339–344.

    PubMed  CAS  Google Scholar 

  • Deshnium, P., Los, D.A., Hayashi, H., Mustardy, L. andMurata, N. 1995. Transformation ofSynechococcus with a gene for choline oxidase enhances tolerance to salt stress. Plant Mol. Biol.29: 897–907.

    Article  PubMed  CAS  Google Scholar 

  • Epstein, E., Norlyn, J.D., Rush, D.W., Kingsbury, R.W., Kelley, D.B., Cunningham, G.A. andWrona, A.F. 1980. Saline culture of crops: A genetic approach. Science210: 399–404.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Perez, A. andBurg, M.B. 1991. Renal medullary organic osmolytes. Physiol. Rev.71: 1081–1115.

    PubMed  CAS  Google Scholar 

  • Hayashi, H., Alia, Mustardy, L., Deshnium, P., Ida, M. andMurata, N. 1997. Transformation ofArabidopsis thaliana with thecodA gene for choline oxidase; accumulation of glycinebetaine and enhanced tolerance to salt and cold stress. Plant J.12: 133–142.

    Article  PubMed  CAS  Google Scholar 

  • Ikuta, S., Imamura, S., Misaki, H. andHoriuchi, Y. 1977. Purification and characterization of choline oxidase fromArthrobacter globiformis. J. Biochem.82: 1741–1749.

    PubMed  CAS  Google Scholar 

  • Incharoenskdi, A., Takabe, T. andAkazawa, T. 1986. Effect of betaine on enzyme activity and subunit interaction of ribulose-1,5-bisphosphate carboxylase/oxygenase fromAphanothece halophytica. Plant Physiol.81: 1044–1049.

    Article  Google Scholar 

  • Kavi Kishor, P.B., Hong, Z., Miao, G.-H., Hu, C.-A. A. andVerma, D.P.S. 1995. Overexpression of Δ1 synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol.108: 1387–1394.

    Google Scholar 

  • Kishitani, S., Watanabe, K., Yasuda, S., Arakawa, K. andTakabe, T. 1994. Accumulation of glycinebetaine during cold acclimation and freezing tolerance in leaves of winter and spring barley plants. Plant Cell Environ.17: 89–95.

    Article  CAS  Google Scholar 

  • Ko, R., Tombras, L., andSmith, G.M. 1994. Glycine betaine confers enhanced osmotolerance and cryotolerance onListeria monocytogenes. J. Bacteriol.176: 426–431.

    PubMed  CAS  Google Scholar 

  • Lever, M., Sizeland, P.C., Bason, L.M., Hayman, C.M. andChambers, S.T. 1994. Glycine betaine and proline betaine in human blood and urine. Biochim. Biophys. Acta1200: 259–264.

    PubMed  CAS  Google Scholar 

  • Makela, P., Mantila, J., Hinkkanen, R., Pehu, E. andPeltonen-Sainio, P. 1996. Effect of foliar applications of glycinebetaine on stress tolerance, growth, and yield of spring cereals and summer turnip rape in Finland. J. Agron. Crop. Sci.176: 223–234.

    Article  CAS  Google Scholar 

  • McKersie, B.D. andLeshem, Y.Y. 1994. Stress and Stress Coping in Cultivated Plants. Kluwer Academic Publishers, Dordrecht/Boston/London.

    Google Scholar 

  • Murashige, T. andSkoog, F. 1962. A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol. Plant15: 473–497.

    Article  CAS  Google Scholar 

  • Murata, N., Ishizaki-Nishizawa, O., Higashi, S., Hayashi, H., Tasaka, Y. andNishida, I. 1992a. Genetically engineered alteration in the chilling sensitivity of plants. Nature356: 710–713.

    Article  CAS  Google Scholar 

  • Murata, N., Mohanty, P.S., Hayashi, H. andPapageorgiou, G.C. 1992b. Glycinebetaine stabilizes the association of extrinsic proteins with the photosynthetic oxygenevolving complex. FEBS Lett.296: 187–189.

    Article  PubMed  CAS  Google Scholar 

  • Nomura, M., Muramoto, Y., Yasuda, S., Takabe, T. andKishitani, S. 1995. The accumulation of glycine betaine during cold acclimation in early and late cultivars of barley. Euphytica83: 247–250.

    Article  CAS  Google Scholar 

  • Papageorgiou, G.C., Fujimura, Y. andMurata, N. 1991. Protection of the oxygen-evolving photosystem II complex by glycinebetaine. Biochim. Biophys. Acta1057: 361–366.

    Article  CAS  Google Scholar 

  • Papageorgiou, G.C. andMurata, N. 1995. The unusually strong stabilizing effects of glycinebetaine on the structure and function in the oxygen-evolving photosystem II complex. Photosynth. Res.44: 243–252.

    Article  CAS  Google Scholar 

  • Robinson, S.P. andJones, G.P. 1986. Accumulation of glycinebetaine in chloroplasts provides osmotic adjustment during salt stress. Aust. J. Plant Physiol.13: 659–668.

    Article  CAS  Google Scholar 

  • Santoro, M.M., Liu, Y., Khan, S.M., Hou, L.X. andBolen, D.W. 1992. Increased thermal stability of proteins in the presence of naturally occurring osmolytes. Biochemistry31: 5278–5283.

    Article  PubMed  CAS  Google Scholar 

  • Tarczynski, M.C., Jensen, R.G. andBohnert, H.J. 1993. Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science259: 508–510.

    Article  CAS  PubMed  Google Scholar 

  • Wall, J.S., Christianson, D.D., Dimler, R.J. andSenti, F.R. 1960. Spectrophotometric determination of betaines and other quaternary nitrogen compounds as their periodides. Analyt. Chem.32: 870–874.

    Article  CAS  Google Scholar 

  • Winzor, C.L., Winzor, D.J., Paleg, L.G., Jones, G.P. andNaidu, B.P. 1992. Rationalization of the effects of compatible solutes on protein stability in terms of thermodynamic nonideality. Arch. Biochem. Biophys.296: 102–107.

    Article  PubMed  CAS  Google Scholar 

  • Wyn Jones, R.G. andStorey, R. 1981. Betaines.In L.G. Paleg and D. Aspinal, eds., The Physiology and Biochemistry of Drought Resistance in Plants, Academic Press, New York, pp. 171–204.

    Google Scholar 

  • Xu, D., Duan, X., Wang, B., Hong, B., Ho, T.-H. andWu, R. 1996. Expression of a late embryogenesis abundant protein geneHVA1 from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol.110: 249–257.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norio Murata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayashi, H., Alia, Sakamoto, A. et al. Enhanced germination under high-salt conditions of seeds of transgenicArabidopsis with a bacterial gene (codA) for choline oxidase. J. Plant Res. 111, 357–362 (1998). https://doi.org/10.1007/BF02512197

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02512197

Key words

Navigation