Skip to main content
Log in

On the asymptotic accuracy of the bootstrap under arbitrary resampling size

  • Bootstrap
  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

We study the order of convergence of the Kolmogorov-Smirnov distance for the bootstrap of the mean and the bootstrap of quantiles when an arbitrary bootstrap sample size is used. We see that for the bootstrap of the mean, the best order of the bootstrap sample is of the order ofn, wheren is the sample size. In the case of non-lattice distributions and the bootstrap of the sample mean; the bootstrap removes the effect of the skewness of the distribution only when the bootstrap sample equals the sample size. However, for the bootstrap of quantiles, the preferred order of the bootstrap sample isn 2/3. For the bootstrap of quantiles, if the bootstrap sample is of ordern 2 or bigger, the bootstrap is not consistent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, T. W. (1955). The integral of a symmetric unimodal function over a symmetric convex set and some probability inequalities,Proc. Amer. Math. Soc.,6, 170–176.

    Article  MATH  MathSciNet  Google Scholar 

  • Arcones, M. A. (1999). Weak convergence for the row sums of a triangular array of empirical processes indexed by a manageable triangular array of functions,Electron. J. Probab.,4, 1–17.

    MathSciNet  Google Scholar 

  • Athreya, K. B. (1987). Bootstrap of the mean in the infinite variance case,Ann. Statist.,15, 724–731.

    MATH  MathSciNet  Google Scholar 

  • Beran, R. J. (1984) Jacknife approximations approximations to bootstrap estimates,Ann. Statist.,12, 101–118.

    MATH  MathSciNet  Google Scholar 

  • Beran, R. and Ducharme, G. R. (1991).Asymptotic Theory for Bootstrap Methods in Statistics, Centre de Recherches Mathématiques, Université de Montréal, Canada.

    MATH  Google Scholar 

  • Bickel, P. J. and Freedman, D. (1981). Some asymptotic theory for the bootstrap,Ann. Statist.,9, 1196–1217.

    MATH  MathSciNet  Google Scholar 

  • Bickel, P. J., Götze, F. and van Zwet, R. W. (1997). Resampling fewer thann observations: Gains, losses, and remedies for losses,Statist. Sinica,7, 1–31.

    MATH  MathSciNet  Google Scholar 

  • Dudley, R. M. (1999).Uniform Central Limit Theorems, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Efron, B. (1979). Bootstrap methods: Another look at the jacknife,Ann. Statist.,7, 1–26.

    MATH  MathSciNet  Google Scholar 

  • Efron, B. and Tibshirani, R. J. (1993).An Introduction to the Bootstrap, Chapman & Hall, New York.

    MATH  Google Scholar 

  • Falk, M. (1990). Weak convergence of the maximum error of the bootstrap quantile estimate,Statist. Probab. Lett.,10, 301–305.

    Article  MATH  MathSciNet  Google Scholar 

  • Falk, M. and Reiss, R. D. (1989). Weak convergence of smoothed and nonsmoothed bootstrap quantiles estimates,Ann. Probab.,17, 362–372.

    MATH  MathSciNet  Google Scholar 

  • Feller, W. (1966).An Introduction to Probability Theory and Its Applications, II, Wiley, New York.

    Google Scholar 

  • Giné, E. (1997). Lectures on some aspects of the bootstrap,Lectures on Probability Theory and Statistics (Saint-Flour, 1996), 37–151, Lecture Notes in Math., Vol. 1665, Springer, Berlin.

    Google Scholar 

  • Hall, P. (1992).The Bootstrap and Edgeworth Expansion, Springer, New York.

    MATH  Google Scholar 

  • Hoffmann-Jørgensen, J. (1991). Stochastic Processes on Polish Spaces, Aarhus University Mat. Inst. Various Publications Series, No. 39, Aarhus, Denmark.

  • Politis, D. N. and Romano, J. P. (1994). Large sample confidence regions based on subsamples under minimal assumptions,Ann. Statist,22, 2031–2050.

    MATH  MathSciNet  Google Scholar 

  • Politis, D. N., Romano, J. P. and Wolf, M. (1999).Subsampling, Springer, New York.

    MATH  Google Scholar 

  • Pollard, D. (1990).Empirical Processes: Theory and Applications, NSF-CBMS Regional Conference Series in Probab. and Statist., Vol. 2, Institute of Mathematical Statistics, Hayward, California.

    Google Scholar 

  • Reiss, R. D. (1986). A new proof of the approximate sufficiency of sparse order statistics,Statist. Probab. Lett.,4, 233–235.

    Article  MATH  MathSciNet  Google Scholar 

  • Sakov, A. and Bickel, P. J. (2000). An Edgeworth expansion for them out ofn bootstrapped median,Statist. Probab. Lett.,49, 217–223.

    Article  MATH  MathSciNet  Google Scholar 

  • Shaked, M. and Shanthikumar, J. G. (1994).Stochastic Orders and Their Applications, Probability and Mathematical Statistics, Academic Press, Boston, Massachusetts.

    MATH  Google Scholar 

  • Shao, J. and Tu, D. (1995).The Jacknife and Bootstrap, Springer, New York.

    Google Scholar 

  • Singh, K. (1981). On the asymptotic accuracy of Efron's bootstrap,Ann. Statist.,9, 1187–1195.

    MATH  MathSciNet  Google Scholar 

  • van der Vaart, A. W. and Wellner, J. A. (1996).Weak Convergence and Empirical Processes with Applications to Statistics, Springer, New York.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Arcones, M.A. On the asymptotic accuracy of the bootstrap under arbitrary resampling size. Ann Inst Stat Math 55, 563–583 (2003). https://doi.org/10.1007/BF02517808

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02517808

Key words and phrases

Navigation