Skip to main content
Log in

A mathematical framework for algorithm-based fault-tolerant computing over a ring of integers

  • Published:
Circuits, Systems and Signal Processing Aims and scope Submit manuscript

Abstract

In this work, we establish a complete mathematical framework for algorithm-based fault-tolerant computing for data vectors defined over a ring of integers. The ring of integers consists of integers {0,1,…,M−1} and all the arithmetic operations are performed modulo the integerM, which is assumed to be composite. The importance of the work lies in the suitability of modulo arithmetic in certain computational environments. Lack of an underlying Galois field,GF(q), presents a unique challenge to this framework. We develop the theory and algorithms for single as well as multiple fault correction and detection. We also analyze the parallel and serial nature of the encoder and decoder configurations. Certain known but rather old results in the theory of numbers dealing with linear congruences and matrix algebra are also described and extended further using mathematical terminology that modern-day researchers are expected to be familiar with.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. E. Dickson,History of the Theory of Numbers, vols. 1-V, Carnegie Institution of Washington, 1920.

  2. C. C. MacDuffee,An Introduction to Abstract Algebra, John Wiley & Sons, New York, 1940.

    MATH  Google Scholar 

  3. L.-K. Hua,Introduction to Number Theory, Springer-Verlag, Berlin and New York, 1982.

    MATH  Google Scholar 

  4. H. N. Shapiro,Introduction to the Theory of Numbers, John Wiley & Sons, 1983.

  5. N. S. Szabo and R. I. Tanaka,Residue Arithmetic and Its Application to Computer Technology, McGraw-Hill Book Co., New York, 1967.

    Google Scholar 

  6. H. J. Nussbaumer,Fast Fourier Transform and Convolution Algorithms, Springer-Verlag, Berlin and New York, 1981.

    MATH  Google Scholar 

  7. J. H. McClelland and C. M. Rader,Number Theory in Digital Signal Processing, Prentice-Hall, Englewood Cliffs, NJ, 1979.

    Google Scholar 

  8. W. W. Peterson and E. J. Weldon Jr.,Error Correcting Codes, 2nd edition, MIT Press, Cambridge, MA, 1972.

    MATH  Google Scholar 

  9. R. E. Blahut,Theory and Practice of Error Control Codes, Addison-Wesley Publishing Co., Reading, MA, 1983.

    MATH  Google Scholar 

  10. R. J. McElice,The Theory of Information and Coding, Addison-Wesley Publishing Co., Reading, MA, 1977.

    Google Scholar 

  11. F. J. MacWilliams and N. J. A. Sloane,The Theory of Error Correcting Codes, North-Holland Publishing Co., Amsterdam, 1977.

    MATH  Google Scholar 

  12. S. Lin and D. J. Costello, Jr.,Error Coding: Fundamentals and Applications, Prentice-Hall, Englewood Cliffs, NJ, 1983.

    Google Scholar 

  13. J. Wakerly,Error Detecting Codes, Self-checking Circuits and Application., North-Holland, Amsterdam, 1978.

    Google Scholar 

  14. T. R. N. Rao and E. Fujiwara,Error Control Coding for Computer Systems, Prentice-Hall, Englewood Cliffs, NJ, 1989.

    Google Scholar 

  15. M. A. Soderstrand, W. K. Jenkins, G. A. Jullien, and F. J. Taylor,Residue Number System Arithmetic: Modern Applications in Digital Signal Processing, IEEE Press, New York, 1986.

    MATH  Google Scholar 

  16. H. Krishna, K. Y. Lin, and J. D. Sun, A coding theory approach to error control in redundant residue number systems, Part I: Theory and single error correction,IEEE Transactions on Circuits and Systems, vol. 39, no. 1, pp. 8–17, January 1992.

    Article  MATH  Google Scholar 

  17. J. D. Sun and H. Krishna, A coding theory approach to error control in redundant residue number systems, Part II: Multiple error detection and correction,IEEE Transactions on Circuits and Systems, vol. 39, no. 1, pp. 18–34, January 1992.

    MATH  Google Scholar 

  18. B. M. Stewart,Theory of Numbers, The Macmillan Co., New York, 1969.

    MATH  Google Scholar 

  19. H. J. S. Smith, On systems of linear indeterminate equations and congruences,Philosophy Transactions Royal Society of London, A151, pp. 293–326, 1861.

    Google Scholar 

  20. H. J. S. Smith, On the arithmetical invariant of a rectangular matrix of which the constituents are integral numbers,Proceedings London Mathematical Society,4, pp. 236–249, 1873.

    MATH  Google Scholar 

  21. A. T. Buston and B. M. Stewart, Systems of linear congruences,Canadian Journal of Mathematics,7, pp. 358–368, 1955.

    Google Scholar 

  22. K. H. Huang and J. A. Abraham, Algorithm-based fault tolerance for matrix operations,IEEE Trans. on Comp., vol. C.-33, no. 6, pp. 518–528, June 1984.

    MATH  Google Scholar 

  23. J. Y. Jou and J. A. Abraham, Fault-tolerant matrix arithmetic and signal processing on highly concurrent computing structures,Proceedings of the IEEE, no. 5, pp. 721–741, May 1986.

    Google Scholar 

  24. C. Y. Chen and J. A. Abraham, Fault tolerance systems for the computation of eigenvalues and singular values,SPIE, Advanced Algorithms and Architectures for Signal Processing, vol. 696, pp. 228–237, 1986.

    Google Scholar 

  25. C. J. Anfinson and F. T. Luk, A linear algebraic model of algorithm-based fault tolerance,IEEE Trans. on Comp., vol. 37, no. 12, pp. 1599–1604, Dec. 1988.

    Article  MATH  MathSciNet  Google Scholar 

  26. I. F. Blake, Codes over certain rings,Information and Control, vol. 20, pp. 396–404, 1972.

    Article  MATH  MathSciNet  Google Scholar 

  27. I. F. Blake, Codes over integer residue rings,Infromation and Control., vol. 29, pp. 295–300, 1975.

    Article  MATH  MathSciNet  Google Scholar 

  28. E. Spiegal, Codes overZ m Information and Control, vol. 35, pp. 48–51, 1977.

    Article  MathSciNet  Google Scholar 

  29. E. Spiegal, Codes overZ m , revisited,Information and Control, vol. 37, pp. 100–104, 1978.

    Article  MathSciNet  Google Scholar 

  30. H. Krishna, B. Krishna, K.-Y. Lin, and J.-D. Sun,Computational Number Theory and Digital Signal Processing, CRC Press, Boca Raton, FL, 1994.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krishna, H. A mathematical framework for algorithm-based fault-tolerant computing over a ring of integers. Circuits Systems and Signal Process 13, 625–653 (1994). https://doi.org/10.1007/BF02523188

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02523188

Keywords

Navigation