Skip to main content
Log in

Finite-element analysis of balloon angioplasty

  • Blood Flow
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

Finite-element modelling is used to simulate the response of atherosclerotic arteries to a balloon angioplasty procedure. Material properties for the normal wall are derived from experimental data, and the properties of the plaque are varied over a wide range. Comparison with experimental data shows that the normal aterial wall can be appropriately modelled using a hyperelastic material definition. Large-strain, nonlinear analysis was used to simulate the dilatation of three typical plaque configurations by an angioplasty balloon. Stress contour plots are presented for each configuration. Results show good agreement with previous histologic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bergel, D. H. (1961): ‘The dynamic elastic properties of the arterial wall,”J. Physiol.,156, pp. 458–469

    Google Scholar 

  • Carew, T. E., Vaishnav, R. N., andPatel, D. J. (1968): ‘Compressibility of the arterial wall,”Circ. Res.,23, pp. 61–68.

    Google Scholar 

  • Carmines, D. V., McElhaney, J. H., andStack, R. (1991): ‘A piece-wise nonlinear elastic stress expression of human and pig coronary arteries tested,”J. Biomech.,24, (10), pp. 899–906

    Article  Google Scholar 

  • Castaneda-Zuniga, W. R., Sibley, R., andAmplatz, K. (1984): ‘The pathologic basis of angioplasty,”Angiology,35, pp. 195–205.

    Google Scholar 

  • Chuong, C. J., andFung, Y. C. (1983): ‘Three dimensional stress distribution in arteries,”J. Biomech. Eng.,105, pp. 268–274.

    Article  Google Scholar 

  • Chuong, C. J., andFung, Y. C. (1984): ‘Compressibility and constitutive equation of aterial wall in radical compression experiments,”J. Biomech.,17, (1), pp. 35–40.

    Article  Google Scholar 

  • Cox, R. H. (1972): ‘A model for the dynamic mechanical properties of arteries’,-ibid. 5, pp. 135–152.

    Article  Google Scholar 

  • Dobrin, P. B., andDoyle, J. M. (1970): ‘Vascular smooth muscle and the anisotropy of dog carotid artery,”Circ. Res.,27, pp. 105–119

    Google Scholar 

  • Dobrin, P. B., andRovick, A. A. (1969): ‘Influence of vascular smooth muscle on contractile mechanics and elasticity of arteries,”Am. J. Physiol.,217, pp. 1644–1651.

    Google Scholar 

  • Dotter, C. T., andJudkins, M. P. (1964): ‘Transluminal treatment of atherosclerotic obstruction: Description of a new technique and a preliminary report of its application,”Circ.,30, pp. 654–670.

    Google Scholar 

  • Doyle, J. M., andDobrin, P. B. (1973): ‘Stress gradients in the walls of large arteries,”J. Biomech.,16, pp. 631–639.

    Article  Google Scholar 

  • Hibbit, Karlsson andSorensen, Inc. (1989): ‘Abaqus theory manual’, V4.8

  • Hori, R. Y., andMockros, L. F. (1976)Indentation test of human articular cartilage.J. Biomech.,9, pp. 295–268.

    Article  Google Scholar 

  • Kinney, T. B., Chin, A. K., Rurik, G. W., Finn, J. C., Shoor, P. M., Hayden, W. G., andFogarty, T. J. (1984): ‘Transluminal angioplasty: A mechanical pathophysiological correlation of its physical mechanisms,”Radiol.,153, pp. 85–89.

    Google Scholar 

  • Kleinberger, M. (1991): ‘An experimental and theoretical study of arterial viscoelasticity: applications to transluminal angioplasty’, Ph.D. dissertation, Duke University.

  • Lawton, R. W. (1957): ‘Some aspects of research in biological elasticity: Introductory remarks’, inRemington, R. W. (Ed): ‘Tissue elasticity’ (American Physiological Society, Washington DC).

    Google Scholar 

  • Malvern, L. E. (1969): ‘Introduction to the mechanics of continuous medium’, (Prentice Hall, Englewood Cliffs, NJ).

    Google Scholar 

  • Patel, D. J., andFry, D. L. (1964): ‘In situ pressure-radius-length measurements in ascending aorta of anesthetized dogs’,J. Appl. Physiol.,19, pp. 413–416.

    Google Scholar 

  • Vito, R. P., andHickey, J. (1980): ‘The mechanical properties of soft tissues II: The elastic response of arterial segments,”J. Biomech.,13, pp. 951–957.

    Article  Google Scholar 

  • Wolf, G. L., LeVeen, R. F., andRing, E. J. (1984): ‘Potential mechanisms of angioplasty,”Cardiovascular Intervent. Radiol.,7, pp. 11–17.

    Google Scholar 

  • Zarins, C. K., Lu, C. T., Gewertz, B. L., Lyon, R. T., Rush, D. S., andGlagov, S. (1982): ‘Arterial disruption and remodeling following balloon dilatation,”Surgery,92, pp. 1086–1095

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oh, S., Klelnberger, M. & McElhaney, J.H. Finite-element analysis of balloon angioplasty. Med. Biol. Eng. Comput. 32 (Suppl 1), S108–S114 (1994). https://doi.org/10.1007/BF02523336

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02523336

Keywords

Navigation