Skip to main content
Log in

An electrical gridlike structure excited at infinity

  • Published:
Mathematics of Control, Signals and Systems Aims and scope Submit manuscript

Abstract

The voltage-current regime of an infinite resistive network, whose current sources are distributed throughout the network and also connected to the network at infinity, is shown to be the limit in a certain Hilbert space of the regimes of an expanding sequence of subnetworks. This result is then applied to an infinite gridlike structure. A decomposition of that structure into ∞-ports yields an equivalent ladder network of operators. A procedure is established for determining the exact solution of the infinite gridlike structure by solving the finite truncations of the operator ladder and then passing to the limit appropriately. This closes a lacuna appearing in a number of prior finite-difference analyses of several exterior problems based upon infinite network theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • [AZ] H. K. An and A. H. Zemanian, Computationally efficient determination of threshold voltages in narrow-channel MOSFETs including fringing and inversion effects.IEEE Trans. Electron Devices,36 (1989), 534–541.

    Article  Google Scholar 

  • [C] G. A. Campbell, Physical theory of the electric wave-filter,Bell System Tech. J.,1 (1922), 1–32.

    Google Scholar 

  • [CFL] R. Courant, K. Friedrichs, and H. Lewy, Über die partiellen Differenzengliechungen der mathematischen Physik,Math. Ann.,100 (1928), 32–74.

    Article  MathSciNet  MATH  Google Scholar 

  • [DS1] P. G. Doyle and J. L. Snell,Random Walks and Electric Networks, Mathematical Association of America, Washington, DC, 1984.

    MATH  Google Scholar 

  • [D1] R. J. Duffin, Discrete potential theory,Duke Math. J.,20 (1953), 233–251.

    Article  MathSciNet  MATH  Google Scholar 

  • [D2] R. J. Duffin, Basic properties of discrete analytic functions,Duke Math. J.,23 (1956), 335–364.

    Article  MathSciNet  MATH  Google Scholar 

  • [DS2] R. J. Duffin and D. H. Shaffer, Asymptotic expansion of double Fourier transforms,Duke Math. J.,27 (1960), 581–596.

    Article  MathSciNet  MATH  Google Scholar 

  • [DS3] R. J. Duffin and E. P. Shelly, Difference equations of polyharmonic type,Duke Math. J.,25 (1958), 209–238.

    Article  MathSciNet  MATH  Google Scholar 

  • [F1] H. Flanders, Infinite networks: I—Resistive networks,IEEE Trans Circuit Theory,18 (1971), 326–331.

    MathSciNet  Google Scholar 

  • [F2] H. Flanders, Infinite networks: II—Resistance in an infinite grid,J. Math. Anal. Appl.,40 (1972), 30–35.

    Article  MathSciNet  MATH  Google Scholar 

  • [F3] R. M. Foster, The average impedance of an electric network, inContributions to Applied Mathematics, Reisner Anniversary Volume, pp. 333–340, Edwards, Ann Arbor, MI, 1949.

    Google Scholar 

  • [H] H. A. Heilbron, On discrete harmonic functions,Math. Proc. Cambridge Philos. Soc.,45 (1949), 194–206.

    Article  Google Scholar 

  • [K] A. E. Kennelly,Artificial Lines and Nets, Wiley, New York, 1912.

    Google Scholar 

  • [L] L. Lavatelli, The resistive net and finite-difference equations,Amer. J. Phys.,40 (1972), 1246–1257.

    Article  Google Scholar 

  • [NS] A. W. Naylor and G. R. Sell,Linear Operator Theory, Holt, Rinehart, and Winston, New York, 1971.

    Google Scholar 

  • [P1] B. Peikari,Fundamentals of Network Analysis and Synthesis, Prentice-Hall, Englewood Cliffs, NJ, 1974.

    Google Scholar 

  • [P2] B. van der Pol, The finite difference analogy of the periodic wave equation and the potential equation, Appendix IV, inProbability and Related Topics in Physical Sciences (M. Kac, ed.), pp. 237–257, Interscience, London, 1959.

    Google Scholar 

  • [S1] A. Stöhr, Über einige lineare partielle Differenzengleichungen mit konstanten Koeffizienten,Math. Nach.,3 (1949/50), 208–242, 295–315, 330–357.

    Google Scholar 

  • [S2] J. L. Synge, The fundamental theorem of electrical networks,Quart. Appl. Math.,9 (1951), 113–127.

    MathSciNet  MATH  Google Scholar 

  • [S3] J. L. Synge, Addendum to the fundamental theorem of electrical networks,Quart. Appl. Math.,11 (1953), 215.

    MathSciNet  MATH  Google Scholar 

  • [W1] K. W. Wagner, Die Theorie der Kettenleiten nebst Anwendungen,Arch. Elektrotech.,3 (1915), 315–332.

    Article  Google Scholar 

  • [W2] L. Weinberg,Network Analysis and Synthesis, McGraw-Hill, New York, 1962.

    Google Scholar 

  • [Z1] A. H. Zemanian,Realizability Theory for Continuous Linear Systems, Academic Press, New York, 1972.

    MATH  Google Scholar 

  • [Z2] A. H. Zemanian, Countably infinite networks that need not be locally finite,IEEE Trans. Circuits and Systems,21 (1974), 274–277.

    Article  MathSciNet  Google Scholar 

  • [Z3] A. H. Zemanian, Connections at infinity of a countable resistive network,Circuit Theory Appl.,3 (1975), 333–337.

    MATH  Google Scholar 

  • [Z4] A. H. Zemanian, Nonuniform semi-infinite grounded grids,SIAM J. Math. Anal.,13 (1982), 770–788.

    Article  MathSciNet  MATH  Google Scholar 

  • [Z5] A. H. Zemanian, Operator-valued transmission lines in the analysis of two-dimensional anomalies imbedded in a horizontally layered earth under transient polarized electromagnetic excitation,SIAM J. Appl. Math.,45 (1985), 591–620.

    Article  MathSciNet  Google Scholar 

  • [Z6] A. H. Zemanian, Infinite electrical networks with finite sources at infinity,IEEE Trans. Circuits and Systems,34 (1987), 1518–1534.

    Article  MathSciNet  MATH  Google Scholar 

  • [Z7] A. H. Zemanian, A finite-difference procedure for the exterior problem inherent incapacitance computations of VLSI interconnections,IEEE Trans. Electron Devices 35 (1988), 985–992.

    Article  MathSciNet  Google Scholar 

  • [ZA1] A. H. Zemanian and H. K. An, Finite-difference analysis of borehole flows involving domain contractions around three-dimensional anomalies,Appl. Math. Comput. 26 (1988), 45–75.

    Article  MathSciNet  MATH  Google Scholar 

  • [ZA2] A. H. Zemanian and B. Anderson, Models of borehole resistivity measurements using infinite electrical grids,Geophysics,52 (1987), 1525–1534.

    Article  Google Scholar 

  • [ZS] A. H. Zemanian and P. Subramaniam, A theory for ungrounded electrical grids and its application to the geophysical exploration of layered strate,Studia Math.,LXXXVII (1983), 163–181.

    Google Scholar 

  • [ZZ] A. H. Zemanian and T. S. Zemanian, Domain contractions around three-dimensional anomalies in spherical finite-difference computations of Poisson's equation,SIAM J. Appl. Math.,46 (1986), 1126–1149.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by National Science Foundation Grants DMS-8521824 and MIP-8822774.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zemanian, A.H. An electrical gridlike structure excited at infinity. Math. Control Signal Systems 4, 217–231 (1991). https://doi.org/10.1007/BF02551268

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02551268

Key words

Navigation