Skip to main content
Log in

The complementary-slackness class of hybrid systems

  • Published:
Mathematics of Control, Signals and Systems Aims and scope Submit manuscript

Abstract

In this paper we understand a “hybrid system” to be one that combines features of continuous dynamical systems with characteristics of finite automata. We study a special class of such systems which we call the complementary-slackness class. We study existence and uniqueness of solutions in the special'cases oflinear andHamiltonian complementary-slackness systems. For the latter class we also prove an energy inequality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Alur and D. Dill, The theory of timed automata,Real-Time: Theory in Practice, Proc. REX workshop, Mook, The Netherlands, June 1991 (J. W. de Bakkeret al., eds.), pp. 45–74, Lecture Notes in Computer Science, vol. 600, Springer-Verlag, Berlin, 1992.

    Chapter  Google Scholar 

  2. R. Alur, T. A. Henzinger, and E. D. Sontag (eds.),Hybrid Systems: Verification and Control, Proc. 5th DIMACS/SYCON workshop on verification and control of hybrid systems, New Brunswick, NJ, Oct. 1995, Lecture Notes in Computer Science, vol. 1066, Springer-Verlag, Berlin, 1996.

    Google Scholar 

  3. M. Andersson, Object-Oriented Modeling and Simulation of Hybrid Systems, Ph.D. thesis, Institute of Automatic Control, Lund Institute of Technology, 1994.

  4. P. J. Antsaklis, W. Kohn, and A. Nerode (eds.),Hybrid Systems II, Proc. third workshop, Ithaca, NY, Oct. 1994, Lecture Notes in Computer Science, vol. 999, Springer-Verlag, Berlin, 1995.

    MATH  Google Scholar 

  5. J. D. Aplevich,Implicit Linear Systems, Lecture Notes in Control and Information Sciences, vol. 152, Springer-Verlag, Berlin, 1991.

    Book  MATH  Google Scholar 

  6. V. A. Armentano, The pencil (sE−A) and controllability-observability for generalized linear systems: a geometric approach,SIAM J. Control Optim.,24 (1986), 616–638.

    Article  MathSciNet  Google Scholar 

  7. A. Back, J. Guckenheimer, and M. Myers, A Dynamical Simulation Facility for Hybrid Systems, Technical Report 92-6, Mathematical Science Institute, Cornell University, 1992.

  8. W. M. G. van Bokhoven,Piecewise Linear Modelling and Analysis, Kluwer, Deventer, 1981.

    Google Scholar 

  9. M. S. Branicky, V. S. Borkar, and S. K. Mitter, A Unified Framework for Hybrid Control: Background, Model, and Theory, Technical Report LIDS-P-2239 (revised), Laboratory for Information and Decision Systems, MIT, June 1994.

  10. K. E. Brenan, S. L. Campbell, and L. R. Petzold,Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, North-Holland, Amsterdam, 1989.

    MATH  Google Scholar 

  11. R. W. Brockett, Smooth multimode control systems,Proc. 1983 Berkeley-Ames Conference on Nonlinear Problems in Control and Fluid Mechanics (L. Hunt and C. Martin, eds.), pp. 103–110. Mathematical Science Press, Brookline, MA, 1984.

    Google Scholar 

  12. R. W. Brockett, Hybrid models for motion control systemsEssays on Control. Perspectives in the Theory and Its Applications, Lectures and the mini-courses of the European control conference (ECC '93), Groningen, June/July 1993 (H. L. Trentelman and J. C. Willems, eds.), pp. 29–53, Birkhäuser, Boston, MA, 1993.

    Google Scholar 

  13. B. Brogliato,Nonsmooth Impact Mechanics. Models, Dynamics and Control, Lecture Notes in Control and Information Sciences, vol. 220, Springer-Verlag, Berlin, 1996.

    MATH  Google Scholar 

  14. B. Brogliato, S.-I. Niculescu, and P. Orhant, On the control of finite-dimensional mechanical systems with unilateral constraints, Preprint, Lab. d'Automatique de Grenoble, September 1995.

  15. D. W. Bushaw, Differential Equations with a Discontinuous Forcing Term, Ph.D. thesis, Department of Mathematics, Princeton University, 1952.

  16. F. E. Cellier,Continuous System Modeling, Springer-Verlag, New York, 1991.

    MATH  Google Scholar 

  17. R. W. Cottle, J.-S. Pang, and R. E. Stone,The Linear Complementarity Problem, Academic Press, Boston, MA, 1992.

    MATH  Google Scholar 

  18. R. David and H. Alla,Petri Nets & Grafcet: Tools for Modelling Discrete Event Systems, Prentice-Hall, Englewood Cliffs, NJ, 1992.

    MATH  Google Scholar 

  19. J. Dieudonne, Sur la réduction canonique des couples des matrices.Bull. Soc. Math. France,74 (1946), 130–146.

    MathSciNet  Google Scholar 

  20. F. R. Gantmacher,The Theory of Matrices (Vol. I), Chelsea, New York, 1959.

    MATH  Google Scholar 

  21. F. R. Gantmacher,The Theory of Matrices (Vol. II), Chelsea, New York, 1959.

    MATH  Google Scholar 

  22. C. W. Gear, Differential-algebraic equation index transformations,SIAM J. Sci. Statist. Comput. 9 (1988), 39–47.

    Article  MathSciNet  Google Scholar 

  23. A. H. W. Geerts and J. M. Schumacher, Impulsive-smooth behavior in multimode systems, Part I: State-space and polynomial representations,Automatica,32 (1996), 747–758.

    Article  MathSciNet  Google Scholar 

  24. L. Glass, Combinatorial and topological methods in nonlinear chemical kinetics,J. Chem. Phys.,63 (1975), 1325–1335.

    Article  Google Scholar 

  25. R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rischel (eds.),Hybrid Systems, Lecture Notes in Computer Science, vol. 736, Springer-Verlag, New York, 1993.

    Google Scholar 

  26. J. Guckenheimer, A robust hybrid stabilization strategy for equilibria,IEEE Trans. Automat. Control,40 (1995), 321–326.

    Article  MathSciNet  Google Scholar 

  27. H.-P. Huang and N. H. McClamroch, Time-optimal control for a robotic contour following problem,IEEE J. Robotics Automat.,4 (1988), 140–149.

    Article  Google Scholar 

  28. A. Isidori, A. J. Krener, C. Gori-Giorgi, and S. Monaco, Nonlinear decoupling via feedback: a differential-geometric approach,IEEE Trans. Automat. Control. 26 (1981), 331–345.

    Article  MathSciNet  Google Scholar 

  29. C. W. Kilmister and J. E. Reeve,Rational Mechanics, Longmans, London, 1966.

    MATH  Google Scholar 

  30. M. Kuijper,First-Order Representations of Linear Systems, Birkhäuser, Boston, MA, 1994.

    MATH  Google Scholar 

  31. C. Lanczos,The Variational Principles of Mechanics, University of Toronto Press, Toronto, 1949.

    MATH  Google Scholar 

  32. J. P. LaSalle, Time optimal control systems,Proc. Nat. Acad. Sci. U.S.A.,45 (1959), 573–577.

    Article  MathSciNet  Google Scholar 

  33. P. Lötstedt, Mechanical systems of rigid bodies subject to unilateral constraints,SIAM J. Appl. Math.,42 (1982), 281–296.

    Article  MathSciNet  Google Scholar 

  34. O. Maler, Z. Manna, and A. Pnueli, From timed to hybrid systems,Real-Time: Theory in Practice, Proc. REX workshop, Mook, The Netherlands, June 1991 (J. W. de Bakkeret al., eds.), pp. 447–484, Lecture Notes in Computer Science, vol. 600, Springer-Verlag, Berlin, 1992.

    Chapter  Google Scholar 

  35. Z. Manna and A. Pnueli,The Temporal Logic of Reactive and Concurrent Systems, Springer-Verlag, New York, 1992.

    Google Scholar 

  36. H. Nijmeijer and A. J. van der Schaft,Nonlinear Dynamical Control Systems, Springer-Verlag, Berlin, 1990.

    MATH  Google Scholar 

  37. J. Pérès,Mécanique Générale, Masson, Paris, 1953.

    MATH  Google Scholar 

  38. A. Pnueli and J. Sifakis (guest eds.), Special issue on hybrid systems,Theoret. Comput. Sci.,138 (1995), 1–239.

    Article  MathSciNet  Google Scholar 

  39. L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko,The Mathematical Theory of Optimal Processes, Interscience, New York, 1962.

    MATH  Google Scholar 

  40. A. Schrijver,Theory of Linear and Integer Programming, Wiley, Chichester, 1986.

    MATH  Google Scholar 

  41. J. M. Schumacher, Transformations of linear systems under external equivalence,Linear Algebra Appl.,102, (1988), 1–33.

    Article  MathSciNet  Google Scholar 

  42. E. D. Sontag, Nonlinear regulation: the piecewise linear approach,IEEE Trans. Automat. Control,26 (1981), 346–358.

    Article  MathSciNet  Google Scholar 

  43. E. D. Sontag, Interconnected automata and linear systems: A theoretical framework in discrete-time,Hybrid Systems: Verification and Control, Proc. 5th DIMACS/SYCON work-shop on verification and control of hybrid systems, New Brunswick, NJ, Oct. 1995, (R. Alur, T. Henzinger, and E. D. Sontag, eds.), pp. 436–448, Lecture Notes in Computer Science, vol. 1066, Springer-Verlag, Berlin, 1996.

    Google Scholar 

  44. J.-E. Strömberg, A Mode Switching Modelling Philosophy, Ph.D. thesis, Department of Electrical Engineering, Linköping University, 1994.

  45. H. J. Sussmann, Subanalytic sets and feedback control.J. Differential Equations,31 (1979), 31–52.

    Article  MathSciNet  Google Scholar 

  46. L. Vandenberghe, B. L. De Moor, and J. Vandewalle, The generalized linear complementarity problem applied to the complete analysis of resistive piecewise-linear circuits,IEEE Trans. Circuits and Systems,36 (1989), 1382–1391.

    Article  MathSciNet  Google Scholar 

  47. J. C. Willems, Dissipative dynamical systems, Part II: Linear systems with quadratic supply rates,Arch. Rational Mech. Anal.,45 (1972), 352–393.

    Article  MathSciNet  Google Scholar 

  48. J. C. Willems, Paradigms and puzzles in the theory of dynamical systems,IEEE Trans. Automat. Control.,36 (1991), 259–294.

    Article  MathSciNet  Google Scholar 

  49. H. S. Witsenhausen, A class of hybrid-state continuous-time dynamic systems,IEEE Trans. Automat. Control,11 (1966), 161–167.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Schaft, A.J., Schumacher, J.M. The complementary-slackness class of hybrid systems. Math. Control Signal Systems 9, 266–301 (1996). https://doi.org/10.1007/BF02551330

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02551330

Key words

Navigation