Skip to main content
Log in

Approximations for optimal stopping of a piecewise-deterministic process

  • Published:
Mathematics of Control, Signals and Systems Aims and scope Submit manuscript

Abstract

This paper deals with approximation techniques for the optimal stopping of a piecewise-deterministic Markov process (P.D.P.). Such processes consist of a mixture of deterministic motion and random jumps. In the first part of the paper (Section 3) we study the optimal stopping problem with lower semianalytic gain function; our main result is the construction of ε-optimal stopping times. In the second part (Section 4) we consider a P.D.P. satisfying some smoothness conditions, and forN integer we construct a discretized P.D.P. which retains the main characteristics of the original process. By iterations of the single jump operator from ℝN to ℝN, each iteration consisting ofN one-dimensional minimizations, we can calculate the payoff function of the discretized process. We demonstrate the convergence of the payoff functions, and for the case when the state space is compact we construct ε-optimal stopping times for the original problem using the payoff function of the discretized problem. A numerical example is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. P. Bertsekas, Convergence of discretization procedures in dynamic programming,IEEE Trans. Automat. Control,20 (1975), 415–419.

    Article  MathSciNet  MATH  Google Scholar 

  2. D. Bertsekas and S. E. Shreve,Stochastic Optimal Control: The Discrete-Time Case, Academic Press, New York, 1978.

    MATH  Google Scholar 

  3. P. Billingsley,Probability and Measure, Wiley, New York, 1979.

    MATH  Google Scholar 

  4. J. M. Bismut and B. Skalli, Temps d’arrêt optimal, théorie générale des processus et processus de Markov,Z. Wahrsch. Verw. Gebiete,39 (1977), 301–313.

    Article  MathSciNet  MATH  Google Scholar 

  5. O. L. V. Costa and M. H. A. Davis, Impulse control of piecewise-deterministic processes,Math. Control Signals Systems (submitted).

  6. M. H. A. Davis, The representation of martingales of jump processes,SIAM J. Control Optim.,14 (1976), 623–638.

    Article  MATH  Google Scholar 

  7. M. H. A. Davis, Piecewise-deterministic Markov processes: a general class of non-diffusion stochastic models.J. Roy. Statist. Soc. Ser. B,46 (1984), 353–388.

    MathSciNet  MATH  Google Scholar 

  8. M. H. A. Davis, Control of piecewise-deterministic processes via discrete time dynamic programming,Proceedings of the 3rd Bad Honnef Conference on Stochastic Differential Systems, June 3–7, 1985, 140–150, Lecture Notes in Control and Information Sciences, Vol 16, Springer-Verlag, Berlin, 1986.

    Google Scholar 

  9. M. H. A. Davis, M. A. H. Dempster, S. P. Sethi, and D. Vermes, Optimal capacity expansion under uncertainty,Adv. in Appl. Probab.,19 (1987), 156–176.

    Article  MathSciNet  MATH  Google Scholar 

  10. C. Dellacherie and P. A. Meyer,Probabilities and Potential, Mathematics Studies, Vol. 29, North-Holland, Amsterdam, 1978.

    MATH  Google Scholar 

  11. R. K. Getoor,Markov Processes: Ray Processes and Right Processes, Lectures Notes in Mathematics, Vol. 440, Springer-Verlag, Berlin, 1981.

    Google Scholar 

  12. U. S. Gugerli, Optimal stopping of a piecewise-deterministic Markov process,Stochastics,19 (1986), 221–236.

    MathSciNet  MATH  Google Scholar 

  13. A. Haurie and P. L’Ecuyer, Approximation and bounds in discrete event dynamic programming,IEEE Trans. Automat. Control,31 (1986), 227–235.

    Article  MATH  Google Scholar 

  14. A. Hordijk and F. A. van der Duyn Schouten, Discretization and weak convergence in Markov decision drift processes,Math. Oper. Res.,9 (1984), 112–141.

    Article  MathSciNet  MATH  Google Scholar 

  15. H. J. Kushner, Approximations and computational methods for optimal stopping and stochastic impulsive control problems,Appl. Math. Optim.,3 (1977), 81–100.

    Article  MathSciNet  MATH  Google Scholar 

  16. H. J. Kushner,Probability Methods for Approximations in Stochastic Control and for Elliptic Equations, Academic Press, New York, 1977.

    MATH  Google Scholar 

  17. S. M. Lenhart and Y. C. Liao, Integro-differential equations associated with optimal stopping of a piecewise deterministic process,Stochastics,15 (1985), 183–208.

    MathSciNet  MATH  Google Scholar 

  18. J. P. Lepeltier and B. Marchal, Théorie générale du contrôle impulsionnel Markovien,SIAM J. Control Optim.,22 (1984), 645–665.

    Article  MathSciNet  Google Scholar 

  19. J. F. Mertens, Strongly supermedian functions and optimal stopping,Z. Wahrsch. Verw. Gebiete,26 (1973), 119–139.

    Article  MathSciNet  MATH  Google Scholar 

  20. M. E. Munroe,Introductory Real Analysis, Addison-Wesley, Reading, MA, 1964.

    Google Scholar 

  21. A. N. Shirvayev,Optimal Stopping Rules, Springer-Verlag, New York, 1978.

    Google Scholar 

  22. M. Soner, Optimal control with state space constraint,SIAM J. Control Optim.,24 (1986), 1110–1122.

    Article  MathSciNet  MATH  Google Scholar 

  23. D. Vermes, Optimal control of piecewise deterministic Markov processes,Stochastics,14 (1985), 165–208.

    MathSciNet  MATH  Google Scholar 

  24. A. A. Yushkevich, Continuous-time Markov decision processes with interventions,Stochastics,9 (1983), 235–274.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costa, O.L.V., Davis, M.H.A. Approximations for optimal stopping of a piecewise-deterministic process. Math. Control Signal Systems 1, 123–146 (1988). https://doi.org/10.1007/BF02551405

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02551405

Key words

Navigation