Skip to main content
Log in

The application of plasma tartrate-resistant acid phosphatase to assess changes in bone resorption in response to artificial menopause and its treatment with estrogen or norethisterone

  • Clinical Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

Plasma tartrate-resistant acid phosphatase (TR ACP), urinary hydroxyproline excretion (UH), serum osteocalcin, and bone alkaline phosphatase isoenzyme were determined in a prospective study in 31 women who had undergone bilateral ovariectomy (OOX). Nine patients were followed up for 1 year without treatment and for the following 3 years when on mestranol (M) substitution. On the basis of UH, 22 patients were identified as having increased bone resorption (BR) within 3 months of OOX. Subsequently, 11 patients were treated with transdermal estradiol (E2) and 11 patients with norethisterone (norethindrone, NE). In untreated patients, the biochemical indices of BR peaked 3–6 months following OOX and biochemical indices of bone formation (BF) continued to increase from 3 until 12 months. The substitution with both E2 or M resulted in normalization in serum and urinary calcium, serum phosphate, renal threshold phosphate concentration (TmPO 4/GRF), and biochemical indices of BR within 4 months of treatment. Biochemical indices of BF normalized within 6 months of treatment. In the M-treated group, these effects continued for 3 years of the follow-up. The hormonal substitution had a protective effect on cortical and lumbar spine bone mass. A significant decrease, but not to normal values, in biochemical indices of BR and a persistent elevation in indices of BF were found in NE-treated patients. Unlike E2, NE does not depress osteoblastic function. There is strong evidence supporting the utility of measurements of TR ACP in plasma in examination of women who had ovariectomies and in assessment of the efficacy of treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Štěpán JJ, Pospíchal J, Presl J, Pacovský V (1987) Bone loss and biochemical indices of bone remodeling in surgically induced postmenopausal women. Bone 8:279–284

    Article  PubMed  Google Scholar 

  2. Reeve J (1987) Bone turnover and trabecular plate survival after artificial menopause. Br Med J 295:757–760

    Article  CAS  Google Scholar 

  3. Ettinger B, Genant HK, Cann CE (1987) Postmenopausal bone loss is prevented by low-dosage estrogen with calcium. Ann Intern Med 106:40–45

    PubMed  CAS  Google Scholar 

  4. Christiansen C, Riis BJ, Rodbro P (1987) Prediction of rapid bone loss in postmenopausal women. Lancet i:1105–1108

    Article  Google Scholar 

  5. Slemenda C, Hui SL, Longcope C, Johnston CC (1987) Sex steroids and bone mass. A study of changes about the time of menopause. J Clin Invest 80:1261–1269

    Article  PubMed  CAS  Google Scholar 

  6. Smith ML, Fogelman I, Hart DM, Scott E, Bevan J, Leggate I (1989) Effect of etidronate disodium on bone turnover following surgical menopause. Calcif Tissue Int 44:74–79

    PubMed  CAS  Google Scholar 

  7. Štěpán JJ, Presl J, Broulík P, Pacovský V (1987) Serum osteocalcin levels and bone alkaline phosphatase isoenzyme after oophorectomy and in primary hyperparathyroidism. J Clin Endocrinol Metab 64:1079–1082

    Article  PubMed  Google Scholar 

  8. Gallagher JC, Young M, Nordin BEC (1972) Effect of artificial menopause on plasma and urine calcium and phosphate. Clin Endocrinol (Oxford) 1:57–64

    CAS  Google Scholar 

  9. Dubovský J, Hrba J, Pacovský V (1967) Acute effects of calcium infusion on hydroxyproline. Clin Chim Acta 17:107–110

    Article  PubMed  Google Scholar 

  10. Štěpán JJ, Šilinková-Málková E, Havránek T, Formánková J, Zichová M, Lachmanová J, Straková M, Broulík P, Pacovský V (1983) Relationship of plasma tartrate-resistant acid phosphatase to the bone isoenzyme of serum alkaline phosphatase in hyperparathyroidism. Clin Chim Acta 133:189–200

    Article  PubMed  Google Scholar 

  11. Štěpán JJ, Volek V, Kolář J (1976) A modified inactivation-inhibition method for determining the serum activity of alkaline phosphatase isoenzymes. Clin Chim Acta 69:1–9

    Article  PubMed  Google Scholar 

  12. Morin LG (1974) Direct colorimetric determination of serum calcium with o-cresolphthalein complexon. Am J Clin Pathol 61:114–117

    PubMed  CAS  Google Scholar 

  13. Bencini DA, Wild JR, O'Donovan GA (1983) Linear one-step assay for the determination of orthophosphate. Anal Biochem 132:254–258

    Article  PubMed  CAS  Google Scholar 

  14. Walton RJ, Bijvoet OLM (1975) Nomogram for derivation of renal threshold phosphate concentration. Lancet ii:309–310

    Article  Google Scholar 

  15. Dequeker J (1972) Bone loss in normal and pathological conditions. Leuven University Press, Leuven, Belgium

    Google Scholar 

  16. Miller SC (1985) The rapid appearance of acid phosphatase activity at the developing ruffled border of parathyroid hormone-activated medullary bone osteoclasts. Calcif Tissue Int 37:526–529

    PubMed  CAS  Google Scholar 

  17. Lam KW, Lee PF, Yam LT (1980) Immunological and biochemical evidence for identity of tartrate-resistant isoenzymes of acid phosphatases from human serum and tissues. Clin Chem 25:420–422

    Google Scholar 

  18. Lau KHW, Onishi T, Wergedal JE, Singer FR, Baylink DJ (1987) Characterization and assay of tartrate-resistant acid phosphatase activity in serum: potential use to assess bone resorption. Clin Chem 33:458–462

    PubMed  CAS  Google Scholar 

  19. Štěpán JJ, Lachmanová J, Straková M, Pacovský V (1987) Serum osteocalcin, bone alkaline phosphatase isoenzyme and plasma tartrate-resistant acid phosphatase in patients on chronic maintenance hemodialysis. Bone Mineral 3:177–183

    Google Scholar 

  20. Štěpán JJ, Tesařová, A, Havránek T, Jodl J, Formánková J, Pacovský V (1985) Age and sex dependency of the biochemical indices of bone remodelling. Clin Chim Acta 151:273–283

    Article  PubMed  Google Scholar 

  21. Robinson DB, Glew RH (1980) A tartrate-resistant acid phosphatase from Gaucher spleen. J Biol Chem 255:5864–5870

    PubMed  CAS  Google Scholar 

  22. Ketcham CM, Baumbach GA, Bazer FW, Roberts RM (1985) The type 5 acid phosphatase from spleen of humans with hairy cell leukemia. J Biol Chem 260:5768–5776

    PubMed  CAS  Google Scholar 

  23. Allen SH, Nuttleman PR, Ketcham CM, Roberts RM (1989) Purification and characterization of human bone tartrateresistant acid phosphatase. J Bone Min Res 4:47–55

    Article  CAS  Google Scholar 

  24. Efstratiadis T, Moss DW (1985) Tartrate-resistant acid phosphatase of human lungs: apparent identity with osteoclastic acid phosphatase. Enzyme 33:34–40

    PubMed  CAS  Google Scholar 

  25. Chetkowski RJ, Meldrum DR, Steingold AK, Randle D, Lu JK, Eggena P, Hershman JM, Alkjaersig NK, Fletcher AP, Judd HL (1986) Biologic effects of transdermal estradiol. N Engl J Med 314:1615–1620

    Article  PubMed  CAS  Google Scholar 

  26. Selby PL, Peacock M (1986) The effect of transdermal oestrogen on bone, calcium-regulating hormones and liver in postmenopausal women. Clin Endocrinol 25:543–547

    CAS  Google Scholar 

  27. Horsman A, Jones M, Francis R, Nordin BEC (1983) The effect of estrogen dose on postmenopausal bone loss. N Engl J Med 309:1405–1407

    Article  PubMed  CAS  Google Scholar 

  28. Lindsay R, Hart Dm, Clark DM (1984) The minimum effective dose of estrogen for the prevention of postmenopausal bone loss. Obstet Gynecol 63:759–763

    PubMed  CAS  Google Scholar 

  29. Eriksen EF, Colvard DS, Berg NG, Graham ML, Mann KG, Spelsberg TC, Riggs BL (1988) Evidence of estrogen receptors in normal human osteoblast-like cells. Science 241:84–86

    Article  PubMed  CAS  Google Scholar 

  30. Abdalla HI, Hart DM, Lindsay R, Leggate I, Hooke A (1985) Prevention of bone mineral loss in postmenopausal women by norethisterone. Obstet Gynecol 66:789–792

    PubMed  CAS  Google Scholar 

  31. Selby PL, Peacock M, Barkworth SA, Brown WB, Taylor GA (1985) Early effects of ethinyestradiol and norethisterone treatment in postmenopausal women on bone resorption and calcium-regulating hormones. Clin Sci 69:265–271

    PubMed  CAS  Google Scholar 

  32. Henzl M, Jirásek J, Horský J, Presl J (1963) Die Proliferationswirkung des 17α-Äthinyl-19-Nor-Testosterons. Arch Gynäkol 199:335–339

    Article  Google Scholar 

  33. Turner RT, Wakley GK (1989) Evidence that progesterone antagonizes the skeletal effects of estrogen. Pacific Osteoporosis Conference:P44 (abstract)

  34. Ettinger B (1988) Prevention of osteoporosis: treatment of estradiol deficiency. Obstet Gynecol 72:12S-17S

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Štěpán, J.J., Pospíchal, J., Schreiber, V. et al. The application of plasma tartrate-resistant acid phosphatase to assess changes in bone resorption in response to artificial menopause and its treatment with estrogen or norethisterone. Calcif Tissue Int 45, 273–280 (1989). https://doi.org/10.1007/BF02556018

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02556018

Key words

Navigation