Skip to main content
Log in

Effect of carbonate content on the ESR spectrum near g=2 of carbonated calciumapatites synthesized from aqueous media

  • Laboratory Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

The ESR spectrum of X-irradiated carbonated apatites synthesized at low temperature was studied as a function of their carbonate content. Using13C-enriched samples, four different carbonate-derived radicals and a surface O ion could be identified. Isotropic CO 3 and CO 2 ions are present at a B site in the apatite lattice, and anisotropic CO 3 and CO 2 radicals are located at the surface of the crystallites. Only the isotropic ESR signals increase with increasing carbonate content. The anisotropic signal ascribed to a surface CO 2 radical is mainly responsible for the so-called asymmetric ESR signal near g=2. It is argued that this surface signal may still be composite and caused by several very similar CO 2 ions. The consequences for phenomenological ESR studies of calcified tissues are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Verbeeck RMH (1986) Minerals in human enamel and dentin. In: Driessens FCM, Woltjens JHM (eds) Tooth development and caries, vol. 1. CRC Press, Coca Raton, pp 95–152

    Google Scholar 

  2. Doi Y, Aoba T, Okazaki M, Takahashi J, Moriwaki Y (1979) Analysis of paramagnetic centers in X-ray-irradiated enamel, bone and carbonate-containing hydroxyapatite by EPR-spectroscopy. Calcif Tissue Int 28:107–112

    Article  PubMed  CAS  Google Scholar 

  3. Bacquet G, Quang Truong V, Vignoles M, Trombe JC, Bonel G (1981) ESR of CO 2 in X-irradiated tooth enamel and A-type carbonated apatite. Calcif Tissue Int 33:105–109

    Article  PubMed  CAS  Google Scholar 

  4. Geoffroy M, Tochon-Danguy HJ (1982) ESR identification of radiation damage in synthetic apatites: a study of the13C-hyperfine coupling. Calcif Tissue Int 34:S99-S102

    PubMed  Google Scholar 

  5. Doi Y, Moriwaki Y, Aoba T, Okazaki M, Takahashi J, Joshin K (1982) Carbonate apatites from aqueous and non-aqueous media studied by ESR, IR and X-ray diffraction: Effect of NH +4 -ions on crystallographic parameters. J Dent Res 61 (2):429–434

    PubMed  CAS  Google Scholar 

  6. Geoffroy M, Tochon-Danguy HJ (1985) Long-lived radicals in irradiated apatites of biological interest: an e.s.r. study of apatite samples treated with CO2. Int J Radiat Biol 48 (4):621–633

    CAS  Google Scholar 

  7. Callens FJ, Verbeeck RMH, Matthys PFA, Martens LC, Boesman ER, Driessens FCM (1986) The ESR-spectrum near g=2 of carbonated calciumapatites synthesized at high temperatures. Bull Soc Chim Belg 95:588–596

    Google Scholar 

  8. Callens FJ, Verbeeck RMH, Matthys PFA, Martens LC, Boesman ER (1987)13C-hyperfine couplings of carbonate radicals in carbonated calciumapatites synthesized at high temperature. Bull Soc Chim Belg 96:165–171

    Article  CAS  Google Scholar 

  9. Callens FJ, Verbeeck RMH, Matthys PFA, Martens LC, Boesman ER (1987) The contribution of CO 3−3 and CO 2 to the ESR-spectrum near g=2 of powdered human tooth enamel. Calcif Tissue Int 41:124–129

    PubMed  CAS  Google Scholar 

  10. LeGeros RZ, LeGeros JP, Trautz OR, Shirra WP (1971) Conversion of monetite, CaHPO4, to apatites: effect of carbonate on the crystallinity and the morphology of the apatite crystallites. Adv X-ray Anal 14:57–66

    CAS  Google Scholar 

  11. Verbeeck RMH, Naessens D, Verbeek F, Driessens FCM (1986) Na and CO3 incorporation in calciumhydroxyapatite by homogeneous precipitation. J Dent Res 65 (special issue):783

    Google Scholar 

  12. Brabson JA, Dunn RL, Epps EA, Hoffman WM, Jacob KD (1958) Report on phosphorus in fertilizers: photometric determination of total phosphorus. J Assoc Off Anal Chem 41:517–524

    CAS  Google Scholar 

  13. De Keersgieter A, Callens F, Baroen M, Matthys P, Boesman E (1985) ESR of isolated Mn2+-centers in alkalichlorides. Phys Stat Sol (b) 129:297–301

    Google Scholar 

  14. Callens F, Verbeeck RMH, Martens LC, Matthys PFA, Boesman E (1986) Electron spin resonance absorption of centers with an orthorhombic g-tensor in polycrystalline substances. Phys Stat Sol (a) 94:267–274

    Article  CAS  Google Scholar 

  15. Wertz JE, Bolton JR (1972) Electron spin resonance. McGraw-Hill, New York, Table C

    Google Scholar 

  16. Meriaudeau P, Vedrine JC, Taarit YB, Naccache C (1975) Electron paramagnetic resonance studies of CO 2 radicals adsorbed on MgO. J Chem Soc Far Trans I 71:736–748

    Article  CAS  Google Scholar 

  17. Mengeot M, Bartram RH, Gilliam OR (1975) Paramagnetic holelike defect in irradiated calcium hydroxyapatite single crystals. Phys Rev B 11:4110–4123

    Article  CAS  Google Scholar 

  18. Serway RA, Marshall SA (1967) Electron spin resonance absorption spectra of CO 3 and CO 3−3 and CO 3−3 molecule-ions in irradiated single-crystal calcite. J Chem Phys 46(5):1949–1952

    Article  CAS  Google Scholar 

  19. Marshall SA, Reinberg AR, Serway RA, Hodges JA (1964) Electron spin resonance absorption spectrum of CO 2 molecule-ions in single crystal calcite. Mol Phys 8:225–231

    Article  CAS  Google Scholar 

  20. Schaafsma TJ, van de Velde GA, Kommadeur J (1968) Electron spin resonance of NO2, I. The ESR-spectrum of NO2 in a polycrystalline matrix of N2O4. Mol Phys 14 (6):501–516

    Article  CAS  Google Scholar 

  21. Schaafsma TJ, Kommandeur J (1968) Electron spin resonance of NO2, II. Rotation of NO2 in polycrystalline N2O4. Mol Phys 14(6):517–523

    Article  CAS  Google Scholar 

  22. Bojko I, Silsbee RH (1971) Hindered rotation at 2K of the NO2 impurity in KCl. J Magn Resonance 5:339–354

    CAS  Google Scholar 

  23. Cevc P, Schara M, Ravnik C, Scaleric U (1976) Study of the arrangement of crystallites in gamma-irradiated human enamel by EPR. J Dent Res 55:691–695

    PubMed  CAS  Google Scholar 

  24. Cevc G, Cevc P, Schara M, Skaleric U (1980) The caries resistance of human teeth is determined by the spatial arrangement of hydroxylapatite microcrystals in the enamel. Nature 286:425, 426

    Article  PubMed  CAS  Google Scholar 

  25. Martens LC, Verbeeck RMH, Matthys PFA, Driessens FCM (1984) The use of electron spin resonance of human tooth enamel in relation to caries susceptibility. J Biol Buccale 12:27–36

    PubMed  CAS  Google Scholar 

  26. Martens LC, Verbeeck RMH, Callens FJ, Matthys PFA, Boesman ER, Dermaut LR (1985) Apatite crystallite alignment in sound human tooth enamel studied by ESR. J Biol Buccale 13:347–353

    PubMed  CAS  Google Scholar 

  27. Martens LC, Verbeeck RMH, Callens FJ, Matthys PFA, Driessens FCM, Dermaut LR (1986) The microcrystallite alignment in human tooth enamel from carious and noncarious teeth in relation to caries-susceptibility. J Biol Buccale 14:65–68

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Callens, F.J., Verbeeck, R.M.H., Naessens, D.E. et al. Effect of carbonate content on the ESR spectrum near g=2 of carbonated calciumapatites synthesized from aqueous media. Calcif Tissue Int 44, 114–124 (1989). https://doi.org/10.1007/BF02556470

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02556470

Key words

Navigation