Skip to main content
Log in

Oxalate and formate metabolism inAlcaligenes andPseudomonas species

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Oxalate is metabolized by the glycerate pathway involving glyoxylate carboligase inAlcaligenes LOx andPseudomonas KOx, and by the serine pathway involving hydroxypyruvate reductase inPs.MOx andPs.AM1 (var. 470).

AlthoughA.LOx does not grown on formate, stimulation of growth was observed in the presence of amino acids and a few Kreb's cycle intermediates.A.LOx possesses two different mechanisms for the oxidation of formate: (1) the constitutive formate oxidase which is present in the particulate fraction of oxalate-grown and succinate-plus-formate-grown cells; (2) the inducible NAD-linked formate dehydrogenase present in the 100000×g supernatant fraction of the cell-free extracts of oxalate-grown cells alone. The two systems occur simultaneously in oxalate-grown cells. The effect of inhibitors on formate oxidase activity and the other enzyme activities of the particulate formate-oxidizing fraction indicate that the oxidation of formate is linked to the respiratory chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anthony, C. andZatman, L. J. 1964. The microbial oxidation of methanol. 1. Isolation and properties ofPseudomonas sp. M.27.—Biochem. J.92: 609–614.

    PubMed  CAS  Google Scholar 

  • Blackmore, M. A. andQuayle, J. R. 1968. Choice between autotrophy and heterotrophy inPseudomonas oxalaticus. Growth in mixed substrates.—Biochem. J.107: 705–713.

    PubMed  CAS  Google Scholar 

  • Blackmore, M. A. andQuayle, J. R. 1970. Microbial growth on oxalate by a route not involving glyoxylate carboligase.—Biochem. J.118: 53–59.

    PubMed  CAS  Google Scholar 

  • Chandra, T. S. 1974. Oxalate and formate metabolism in anAlcaligenes species. Abstract MB-14;—15th Annual Conference of the Association of Microbiologists of India.

  • Chandra, T. S. andShethna, Y. I. 1975. Isolation and characterization of some new oxalate-decomposing bacteria.—Antonie van Leeuwenhoek41: 101–111.

    PubMed  CAS  Google Scholar 

  • Gale, E. F. 1939. Formic dehydrogenase ofBacterium coli: Its inactivation by oxygen and its protection in the bacterial cell.—Biochem. J.,33: 1012–1027.

    PubMed  CAS  Google Scholar 

  • Heinen, W. 1971. Inhibitors of electron transport and oxidative phosphorylation, p. 383–393.In J. R. Norris and D. W. Ribbons, (eds.), Methods in Microbiology, Vol. 6A.—Academic Press, New York.

    Google Scholar 

  • Iida, K. andTaniguchi, S. 1959. Studies on nitrate reductase system ofEscherichia coli. I. Particulate electron transport system to nitrate and its solubilization.—J. Biochem.46: 1041–1055.

    CAS  Google Scholar 

  • Johnson, P. A., Jones-Mortimer, M. C. andQuayle, J. R. 1964. Use of a purified bacterial formate dehydrogenase for the micro-estimation of formate.—Biochim. Biophys. Acta89: 351–353.

    PubMed  CAS  Google Scholar 

  • Kaltwasser, H. 1968. Harnsäureabbau und Biosynthese der Enzyme Uricase, Glyoxylatcarboligase und Urease beiHydrogenomonas H16. 1. Bildung von Glyoxylatcarboligase undd-Glycerat-3-Dehydrogenase.—Arch. Mikrobiol.64: 71–84.

    Article  PubMed  CAS  Google Scholar 

  • Kornberg, H. L. 1966. Anaplerotic sequences and their role in metabolism, p. 1–31.In P. N. Campbell and G. D. Greville, (eds.), Essays in Biochemistry, Vol. 2.—Academic Press, London and New York.

    Google Scholar 

  • Kornberg, H. L. andElsden, S. R. 1961. The metabolism of 2-carbon compounds by microorganisms. —Advan. Enzymol.23: 401–470.

    CAS  Google Scholar 

  • Kung, H.-F. andWagner, C. 1970. Oxidation of C1 compounds byPseudomonas sp. MS.— Biochem. J.116: 357–365.

    PubMed  CAS  Google Scholar 

  • Large, P. J. andQuayle, J. R. 1963. Microbial growth on C1 compounds. 5. Enzyme activities in extracts ofPseudomonas AM1.—Biochem. J.87: 386–396.

    PubMed  CAS  Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L. andRandall, R. J. 1951. Protein measurement with the Folin phenol reagent.—J. Biol. Chem.193: 265–275.

    PubMed  CAS  Google Scholar 

  • Malavolta, E., Delwiche, C. C. andBurge, W. D. 1962. Formate oxidation by cell-free preparations fromNitrobacter agilis.—Biochim. Biophys. Acta57: 347–351.

    Article  PubMed  CAS  Google Scholar 

  • O'Kelley, J. C. andNason, A. 1970. Particulate formate oxidase fromNitrobacter agilis.— Biochim. Biophys. Acta205: 426–436.

    Article  PubMed  Google Scholar 

  • Quayle, J. R. 1963a. Carbon assimilation byPseudomonas oxalaticus (OX1). 6. Reactions of oxalyl-coenzyme A.—Biochem. J.87: 368–373.

    PubMed  CAS  Google Scholar 

  • Quayle, J. R. 1963b. Carbon assimilation byPseudomonas oxalaticus (OX1). 7. Decarboxylation of oxalyl-coenzyme A to formyl-coenzyme A.—Biochem. J.,89: 492–503.

    PubMed  CAS  Google Scholar 

  • Quayle, J. R. 1972. The metabolism of one-carbon compounds by micro-organisms.— Advan. Microbial Physiol.7: 119–203.

    Article  CAS  Google Scholar 

  • Quayle, J. R., Keech, D. B. andTaylor, G. A. 1961. Carbon assimilation byPseudomonas oxalaticus (OX1). 4. Metabolism of oxalate in cell-free extracts of the organism grown on oxalate.—Biochem. J.78: 225–236.

    PubMed  CAS  Google Scholar 

  • Quayle, J. R. andTaylor, G. A. 1961. Carbon assimilation byPseudomonas oxalaticus (OX1). 5. Purification and properties of glyoxylic dehydrogenase.—Biochem. J.78: 611–615.

    PubMed  CAS  Google Scholar 

  • Radcliffe, B. C. andNicholas, D. J. D. 1970. Some properties of a nitrate reductase fromPseudomonas denitrificans.—Biochim. Biophys. Acta205: 273–287.

    Article  PubMed  CAS  Google Scholar 

  • Sanadi, D. R. andJacobs, E. E. 1967. Assay of oxidative phosphorylation at the cytochrome oxidase region (site III) p. 38–41.—In S.P. Colowick and N. O. Kaplan, (eds.), Methods in Enzymology, Vol. X.—Academic Press, Inc., New York.

    Google Scholar 

  • Smith, L. 1961. Cytochrome systems in aerobic electron transport, p. 365–396. (p. 375).In I. C. Gunsalus and R. Y. Stanier, (eds.), The Bacteria. Vol. 2.—Academic Press, New York.

    Google Scholar 

  • Taniguchi, S. andItagaki, E. 1960. Nitrate reductase of nitrate respiration type fromE. coli. 1. Solubilization and purification from the particulate system with molecular characterization as a metalloprotein.—Biochim. Biophys. Acta44: 263–279.

    Article  PubMed  CAS  Google Scholar 

  • Umbreit, W. W., Burris, R. H. andStauffer, J. F. 1964. Manometric techniques, 4th ed. p. 28.—Burgess Publishing Company, Minnesota.

    Google Scholar 

  • Van Gool, A. andLaudelout, H. 1966. Formate utilization byNitrobacter winogradskyi.— Biochim. Biophys. Acta127: 295–301.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chandra, T.S., Shethna, Y.I. Oxalate and formate metabolism inAlcaligenes andPseudomonas species. Antonie van Leeuwenhoek 41, 465–477 (1975). https://doi.org/10.1007/BF02565090

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02565090

Keywords

Navigation