Skip to main content
Log in

Vaporization of single liquid drops in an immiscible liquid Part I: Forms and motions of vaporizing drops

Verdampfung einzelner Flüssigkeitstropfen in einer nicht mischbaren Flüssigkeit Teil I: Formen und Bewegungen der verdampfenden Tropfen

  • Published:
Wärme - und Stoffübertragung Aims and scope Submit manuscript

Abstract

Vaporization process of single drops of pentane or furan in an aqueous glycerol has been studied photographically in the region where the geometrically simple configuration and rectilinear motion of vaporizing two-phase bubbles are realized. The instantaneous velocity of rise of two-phase bubbles agreed approximately with Stokes' theory in the range Re < 1. The liquid-liquid interfacial area takes almost a constant value slightly higher than the initial surface area of the liquid drop in the range below 10% of the vaporization ratio, and then reduces gradually. The vaporization does not bring an effective increase of heat transfer area.

Zusammenfassung

Der Verdampfungsvorgang einzelner Tropfen von Pentan und Furan in wässeriger Glyzerinlösung wurde photographisch in einem Bereich untersucht, in dem die geometrisch einfache Form und geradlinige Bewegung der verdampfenden zweiphasigen Blasen vorherrschen. Im Bereich Re < 1 stimmt die nichtstationäre Aufstiegsgeschwindigkeit der zweiphasigen Blasen mit der Stokes-Theorie überein. Die Grenzfläche flüssig-flüssig nimmt unterhalb einer 10 % igen Verdampfung einen fast konstanten Wert an, etwas höher als die ursprüngliche flüssige Tropfenoberfläche, und nimmt dann schrittweise ab. Die Verdampfung ergibt keine wirksame Erhöhung der wärmeübertragenden Oberfläche.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A:

total surface area of two-phase bubble

AL :

liquid-liquid interfacial area of two-phase bubble

D:

equivalent spherical diameter of two-phase bubble

Di :

initial drop diameter

g:

acceleration of gravity

L:

equivalent spherical diameter of horizontal cross section of upper column

Ma :

mass of air

Md :

mass of dispersed-phase component

Mdl :

mass of dispersed-phase component in liquid phase

Mdv :

mass of dispersed-phase component in vapor phase

Re:

=UD/νc

ΔT :

nominal temperature difference

U:

velocity of rise

U :

velocity of rise in infinite liquid medium

β:

half opening angle of vapor phase in two-phase bubble

μc :

viscosity of continuous-phase liquid

μdl :

viscosity of dispersed-phase component in liquid phase

μdv :

viscosity of dispersed-phase component in vapor phase

νc :

kinematic viscosity of continuous-phase liquid

ξ:

vaporization ratio

ρa :

density of air

ρc :

density of continuous-phase liquid

ρdl :

density of dispersed-phase component in liquid phase

ρdv :

density of dispersed-phase component in vapor phase

σc :

surface tension of continuous-phase liquid

σd :

surface tension of dispersed-phase liquid

Literature

  1. Boehm, R.F.; Jacobs, H.R.; Coates, W.W.: Application of direct contact heat exchangers to power generation systems utilizing geothermal brines, Proceedings of the 9th Intersociety Energy Conversion Engineering Conference, (1974) 1044

  2. Mori, Y.H.; Komotori, K.: Boiling modes of volatile liquid drops depending on degree of superheat, ASME Paper 76-HT-13, (1976)

  3. Mori, Y.H.; Komotori, K.: Boiling of single superheated drops in an immiscible liquid, Heat Transfer-Japanese Research5 (1976) 75

    Google Scholar 

  4. Klipstein, D.H.: Heat transfer to a vaporizing immiscible drop, D. Sc. Thesis, M.I.T. (1963)

  5. Sideman, S.; Taitel, Y.: Direct-contact heat transfer with change of phase: Evaporation of drops in an immiscible liquid medium, Int. J. Heat Mass Transfer7 (1964) 1273

    Article  Google Scholar 

  6. Sideman, S.; Hirsch, G.: Direct contact heat transfer with change of phase. III: Analysis of the transfer mechanisms of drops evaporating in immiscible liquid media, Israel J. Technol.2 (1964) 234

    Google Scholar 

  7. Sideman, S.; Hirsch, G.; Gat, Y.: Direct contact heat transfer with change of phase: Effect of the initial drop size in three-phase heat exchangers, A.I.Ch.E. J.11 (1965) 1081

    Google Scholar 

  8. Sideman, S.; Isenberg, J.: Direct contact heat transfer with change of phase: Bubble growth in three-phase systems, Desalination2 (1967) 207

    Article  Google Scholar 

  9. Prakash, C.B.; Pinder, K.L.: Direct contact heat transfer between two immiscible liquids during vaporization (Part I: Measurement of heat transfer coefficient), Can. J. Chem. Eng.45 (1967) 210

    Google Scholar 

  10. Prakash, C.B.; Pinder, K.L.: Direct contact heat transfer between two immiscible liquids during vaporization (Part II: Total evaporation time), Can. J. Chem. Eng.45 (1967) 215

    Article  Google Scholar 

  11. Adams, A.E.S.; Pinder, K.L.: Average heat transfer coefficient during the direct evaporation of a liquid drop, Can. J. Chem. Eng.50 (1972) 707

    Article  Google Scholar 

  12. Simpson, H.C.; Beggs, G.G.; Nazir, M.: Evaporation of butane drops in brine, Proceedings of the 4th International Symposium on Fresh Water from the Sea.3 (1973) 409

    Google Scholar 

  13. Simpson, H.C.; Beggs, G.G.; Nazir, M.: Evaporation of a droplet of one liquid rising through a second immiscible liquid: A new theory of the heat transfer process, Heat Transfer 1974,5 (1974) 59

    Google Scholar 

  14. Tochitani, Y.; Nakagawa, T.; Mori, Y.H.; Komotori, K.: Vaporization of single liquid drops in an immiscible liquid (Part II: Heat transfer characteristics), Wärme- und Stoffübertragung10 (1977), to be published

  15. Mori, Y.H.; Komotori, K.; Mizumoto, M.; Nakagawa, T.: Boiling of superheated drops in an immiscible liquid medium. Part I: Water-Silicone oil system (in Japanese), Transactions of the Japan Soc. of Mech. Engrs.40 (1974) 507

    Google Scholar 

  16. International Critical Tables, III

  17. Mellan, L.: Industrial Solvents, 2nd Ed. Reinhold (1950)

  18. American Petroleum Institute: Selected Values of Properties of Hydrocarbons and Related Compounds, (1958)

  19. American Institute of Physics Handbook, 3rd Ed. McGrawhill

  20. Guthrie, G.B. Jr.; Scott, D.W.; Hubbard, W. N.; Katz, C.; McCullough, J.P.; Gross, M.E.; Williamson, K.D.; Waddington, G.: Thermodynamic properties of furan, J. Amer. Chem. Soc.74 (1952) 4662

    Article  Google Scholar 

  21. Sax, S.I.: Dangerous Properties of Industrial Materials, 3rd Ed. Van Nostland Reinhold

  22. Weissberger, A.: Organic Solvents (1955) 23. Rohsenow, W.M.; Hartnett, J.P.: Handbook of Heat Transfer, McGrawhill (1973)

  23. Nagashima, A.; Kitazawa, N. (Department of Mechanical Engineering, Keio University): unpublished

  24. Tsuge, H.; Hibino, S.: Effect of wall proximity on the rising velocity of gas bubbles in various liquids (inJapanese), KagakuKogaku37 (1973) 1125

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tochitani, Y., Mori, Y.H. & Komotori, K. Vaporization of single liquid drops in an immiscible liquid Part I: Forms and motions of vaporizing drops. Warme- und Stoffubertragung 10, 51–59 (1977). https://doi.org/10.1007/BF02570666

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02570666

Keywords

Navigation