Skip to main content
Log in

Scale effect on rock fissuration porosity

  • Published:
Environmental Geology and Water Sciences

Abstract

Scale effect on rock fissuration porosity is analyzed by means of structural conceptual schematic diagram designed for a reservoir of cubical blocks separated by clefts with constant openings. Two cases are considered: (1) either the blocks are compact (simple porosity due to clefts), or (2) the blocks are affected by fissuration porosity (in which case the system has double fissural porosity). This hexahedral schematization is consistent with what is often noted in tectonic fissuration. Porosities are calculated for increasing volumes whether they be spherical or cubic, and these porosities are expressed in relation to the average effective porosity of the aggregate. If we refer to the different sizes of the interfissural distances normally observed, we note that the representative porosities can probably be reached only for volumes in excess of 106 m3, even in the best circumstances. (This is the Representative Elementary Volume).

For such volumes, an experimental approach seems difficult. Moreover, in natural media, volumes of such magnitude must embody various fields of heterogeneity which adversely affect the significance of apparent porosities. This is the case as shown by a variation within the same rock in the fissuration density.

We conclude, therefore, that research into this type of porosity should be carried out by statistical methods, because we are dealing with a parameter that can be analyzed as the function of a regionalized variable and expressed as a term of probability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Alpay, O. A., 1972, A practical approach to defining reservoir heterogeneity: J. Petrol. Technol., v. 20, No. 7, p. 841–848.

    Google Scholar 

  • Barenblatt, G. I., Iv. P. Zheltov, and I. N. Kocina, 1960, Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks. J. Appl. Math. Mech. Engl. Transl., v. 24, p. 1286–1303.

    Article  Google Scholar 

  • Bear, J., 1972, Dynamics of fluids in porous media: Elsevier, New York, 764 p.

    Google Scholar 

  • Drogue, C., 1971, De l'eau dans les calcaires: Scien. Progrès. Découverte, Dunod, no. 3433, p. 39–46.

    Google Scholar 

  • Drogue, C., and C. A. C. Almeida, 1984, Déformations cassantes et structure de magasin dans la couverture carbonatée mésozoïque du centre du Portugal: C.R. Acad. Sci. Paris, t. 299, no. 9, p. 577–580.

    Google Scholar 

  • Dutartre, Ph., 1981, Etude de la fracturation du granite de la Margeride (Lozère): Thèse 3e cycle, Univ. Paris VII.

  • Freeze, R. A., 1975, A stochastic-conceptual analysis of one dimensional groundwater flow in nonuniform homogeneous media: Water Resour. Res., v. 11, no. 5, p. 725–741.

    Google Scholar 

  • Hubbert, M. K., 1956, Darcy's law and the field equations of the flow of underground fluids. Trans. Am. Inst. Min. Metall. Pet. Eng., v. 207, p. 222–239.

    Google Scholar 

  • Huyakorn, P. S., B. H. Lester, and C. R. Faust, 1983, Finite element techniques for modeling groundwater flow in fractured aquifers: Water Resour. Res., v. 19, no. 4, p. 1019–1035.

    Google Scholar 

  • Jamier, D., and G. P. Simeoni, 1971, Etude statistique de la distribution spatiale des éléments structuraux dans deux massifs des Alpes Helvétiques: Bull. B.R.G.M., v. 2, III, p. 67–76.

    Google Scholar 

  • Kazemi, H., M. S. Seth, and G. W. Thomas, 1969, The interpretation of interference tests in naturally fractured reservoirs with uniform fracture distribution. Soc. Pet. Eng. J., v. 9, p. 463–472.

    Google Scholar 

  • Long, J. C. S., J. S. Remer, C. R. Wilson, and P. A. Witherspoon, 1982, Porous media equivalents for networks of discontinuous fractures. Water Resour. Res., v. 18, no. 3, p. 645–658.

    Google Scholar 

  • Matheron, G., 1965, Les variables régionalisées et leur estimation. Masson, Paris.

    Google Scholar 

  • Moench, A. F., 1984, Double-porosity models for a fissured groundwater reservoir with fracture skin. Water Resour. Res., v. 20, no. 7, p. 831–846.

    Google Scholar 

  • Odeh, A. S., 1965, Unsteady behavior of naturally fractured reservoirs, Soc. Pet. Engl. J., v. 5, p. 60–65.

    Google Scholar 

  • Razack, M., 1979, Approche numérique et quantitative de l'étude sur clichés aériens de la fracturation des réservoirs en roches fissurées. Rev. Inst. Fr. Pétr., v. XXXIV, no. 4, p. 547–574.

    Google Scholar 

  • Reiss, L. H., 1980, Reservoir engineering en milieu fissuré. Technip., Paris. 136 p.

    Google Scholar 

  • Shapiro, A. M., and J. Andeson, 1983, Steady State fluid response in fractured rock: A boundary element solution for a coupled discrete fracture continum Model. Water Resour. Res., v. 19, no. 4, p. 959–969.

    Google Scholar 

  • Snow, D. T., 1969, Anisotropic permeability of fractured media. Water Resour. Res., v. 5, no. 6, p. 1273–1289.

    Google Scholar 

  • Streslova-Adams, T. D., 1977, Well hydraulics in heterogeneous aquifer formations. Pages 357–423in V. Te. Chow, ed., Advances in hydroscience: II, New York, Academic Press.

    Google Scholar 

  • Summers, W. K., 1972, Specific capacities of wells in crystalline rock: Ground Water, v. 10, no. 6, p. 37–47.

    Article  Google Scholar 

  • Thomas, A., A. Pineau, and P. Richard, 1983, Approche probabiliste et géostatistique de la notion de porosité fissurale: Rev. Française de Géotech., v. 23, p. 39–49.

    Google Scholar 

  • Van Golf-Racht, T. D., 1982, Fundamentals of fractured reservoir engineering: Amsterdam, Elsevier, 710 p.

    Google Scholar 

  • Warren, J. E., and P. Root, 1963, The behavior of naturally fractured reservoirs: Soc. Pet. Eng. J., v. 3, p. 245–258.

    Google Scholar 

  • Wilson, C. R., and P. A. Witherspoon, 1974, Steady state flow in rigid networks of fractures: Water Resour. Res., v. 10, no. 2, p. 328–335.

    Article  Google Scholar 

  • Witherspoon, P. A., C. R. Wilson, J. G. S. Long, A. O. Dubois, R. M. Galbraith, J. E. Gale, and M. McPherson, 1980, Mesures de perméabilité en grand dans les roches cristallines fracturées: Bull. B.R.G.M., v. III, no. 1, p. 53–61.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drogue, C. Scale effect on rock fissuration porosity. Environ. Geol. Water Sci 11, 135–140 (1988). https://doi.org/10.1007/BF02580449

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02580449

Keywords

Navigation