Skip to main content
Log in

Creep of zirconium and zirconium alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Cumulative zirconium and zirconium alloy creep data over a broad range of stresses (0.1 to 115 MPa) and temperatures (300 °C to 850 °C) were analyzed based on an extensive literature review and experiments. Zirconium obeys traditional power-law creep with a stress exponent of approximately 6.4 over stain rates and temperatures usually associated with the conventional “five-power-law” regime. The measured activation energies for creep correlated with the activation energies for zirconium self-diffusion. Thus, dislocation climb, rather than the often assumed glide mechanism, appears to be rate controlling. The common zirconium alloys (i. e., Zircaloys) have higher creep strength than zirconium. The stress exponents of the creep data in the five-power-law regime were determined to be 4.8 and 5.0 for Zircaloy-2 and Zircaloy-4, respectively. The creep strength of irradiated Zircaloy appears to increase relative to unirradiated material. It was found that the creep behavior of zirconium was not sensitive to oxygen in the environment over the temperature range examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.C. Ecob and A.T. Donaldson:J. Nucl. Mater., 1985, vol. 132, pp. 110–25.

    Article  CAS  Google Scholar 

  2. V. Fidleris:J. Nucl. Mater., 1968, vol. 26, pp. 51–76.

    Article  CAS  Google Scholar 

  3. V. Fidleris and C.D. Williams:Electrochem. Technol., 1966, vol. 4, pp. 258–67.

    CAS  Google Scholar 

  4. A.J. Ardell and O.D. Sherby:Trans. TMS-AIME, 1967, vol. 239, pp. 1547–56.

    CAS  Google Scholar 

  5. E.R. Gilbert, S.A. Duran, and A.L. Bement:Applications-Related Phenomena for Zirconium and Its Alloys, ASTM STP 458, ASTM, Philadelphia, PA, 1968, pp. 210–25.

    Google Scholar 

  6. S.R. MacEwen, R.G. Fleck, E.T.C. Ho, and O.T. Woo:Metall. Trans. A, 1981, vol. 12A, pp. 1751–59.

    Google Scholar 

  7. M. Pahutova and J. Cadek:Mater. Sci. Eng., 1973, vol. 11, pp. 151–62.

    Article  Google Scholar 

  8. I.M. Bernstein:Trans. TMS-AIME, 1967, vol. 239, pp. 1518–22.

    CAS  Google Scholar 

  9. B. Ramaswami and G.B. Craig:Trans. TMS-AIME, 1967, vol. 239, pp. 1226–31.

    CAS  Google Scholar 

  10. N. Prasad, G. Malakondaiah, and P. Rama Rao:Trans. Ind. Inst. Met., 1989, vol. 42 (supplement), pp. S165–74.

    Google Scholar 

  11. H. Siethoff and K. Ahlborn:Scripta Metall., 1987, vol. 21A, pp. 1439–44.

    Article  Google Scholar 

  12. T.A. Hayes, M.E. Kassner, and R.S. Rosen:Metall. Mater. Trans. A, 2002, vol. 33A, pp. 337–43.

    CAS  Google Scholar 

  13. W. Blum and W. Maier:Phys. Status Solidi, 1999, vol. 171, pp. 467–74.

    Article  CAS  Google Scholar 

  14. S. Fujishiro and D. Eylon:Scripta Metall., 1977, vol. 11, pp. 1011–16.

    Article  CAS  Google Scholar 

  15. C. Quesne, C. Duong, F. Charpentier, J. Fries, and P. Lacombe:J. Less-Common Met., 1979, vol. 68, pp. 133–42.

    Article  CAS  Google Scholar 

  16. S. Raff and R. Meyder:Water Reactor Fuel Element Performance Computer Modeling, Applied Science Publishers, London, 1983, p. 253.

    Google Scholar 

  17. S. Fujishiro and D. Eylon:Scripta Metall., 1977, vol. 11, pp. 1011–16.

    Article  CAS  Google Scholar 

  18. M.E. Kassner and M.-T. Perez-Prado:Fundamentals of Creep in Metals and Alloys, Elsevier, Oxford, 2006.

    Google Scholar 

  19. M.T. Pérez-Prado, S.R. Barrabes, M.E. Kassner, and E. Evangelista:Acta Mater., 2005, vol. 53, pp. 581–91.

    Article  CAS  Google Scholar 

  20. G.A. Henshall, M.E. Kassner, and H.J. McQueen:Metall. Mater. Trans. A, 1992, vol. A23, pp. 881–89.

    Google Scholar 

  21. M. Lubbehusen, K. Vieregge, G.M. Hood, H. Mehrer, and C. Herzig:J. Nucl. Mater., 1991, vol. 182, pp. 164–69.

    Article  CAS  Google Scholar 

  22. J. Horvath, F. Dyment, and H. Mehrer:J. Nucl. Mater., 1984, vol. 126, pp. 206–14.

    Article  CAS  Google Scholar 

  23. F. Dyment and C.M. Libanati:J. Mater. Sci., 1968, vol. 3, pp. 349–59.

    Article  CAS  Google Scholar 

  24. G.B. Fedorov and F.I. Zhomov:Met. Metalloved. Chistyh. Metall., 1959, vol. 1, p. 161.

    Google Scholar 

  25. E.V. Borisov, Yu. G. Godin, P.L. Gruzin, A.J. Evstyukhin, and V.S. Emel’yanov:Metall. Metallogr., 1958, p. 291.

  26. V.S. Lyashenko, V.N. Bykov, and L.V. Pavlinov:Phys. Metall. Metallogr., 1959, vol. 8, pp. 40–46.

    Google Scholar 

  27. P. Flubacher: “Selbst-Diffusionsversuche in α-Zirkon,” EIR-Bericht No. 49, Eidg. Institut für Reaktorforschung, Würenlingen, Switzerland, 1963.

    Google Scholar 

  28. G.M. Hood:Defect Diff. Forum, 1993, vols. 95–98, pp. 755–74.

    Google Scholar 

  29. W. Frank:Defect Diff. Forum, 1989, vols. 66–69, pp. 387–94.

    Google Scholar 

  30. E. Forlerer de Svarch and C. Rodriguez:J. Nucl. Mater., 1991, vol. 185, pp. 167–73.

    Article  Google Scholar 

  31. T.A. Hayes: Ph.D. dissertation, University of California, San Diego, CA, 2004.

    Google Scholar 

  32. J.J. Holmes:J. Nucl. Mater., 1964, vol. 13, pp. 137–41.

    Article  CAS  Google Scholar 

  33. R.B. Jones:J. Nucl. Mater., 1966, vol. 19, pp. 204–07.

    Article  CAS  Google Scholar 

  34. G. Kaspar, M. Peehs, E. Steinberg, and H. Schonfeld:Trans. 8th Int’L SMiRT Conf., North Holland, Amsterdam paper C1/8, 1985, pp. 51–7.

    Google Scholar 

  35. D.S. Wood and B. Watkins:J. Nucl. Mater., 1971, vol. 41, pp. 327–40.

    Article  CAS  Google Scholar 

  36. K.M. Rose and E.D. Hindle:Zirconium in the Nuclear Industry, ASTM STP 633, ASTM, Philadelphia, PA, 1977, p. 24.

    Google Scholar 

  37. P.A. Ross-Ross and C.E.L. Hunt:J. Nucl. Mater., 1968, vol. 26, pp. 2–17.

    Article  Google Scholar 

  38. B.D. Clay and G.B. Redding: “Creep Rupture Properties of Alpha-Phase Zircaloy Cladding Relevant to the Loss-of-Coolant Accident,” CEGB Report No. RD/B/N 3187, 1975, Berkeley Nuclear Laboratories Report No. CEGB-RD/B/N 3782, Berkeley, England, 1976.

  39. B.D. Clay and G.B. Redding:J. Br. Nucl. Ener. Soc., 1976, vol. 15, pp. 253–56.

    CAS  Google Scholar 

  40. N. Prasad, G. Malakondaiah, and P. Rama Rao:Scripta Metall., 1992, vol. 26, pp. 541–43.

    Article  CAS  Google Scholar 

  41. N. Prasad, G. Malakondaiah, K. Muraleedharan, and P. Rama Rao:J. Nucl. Mater., 1988, vol. 158, pp. 30–41.

    Article  CAS  Google Scholar 

  42. C.E. Coleman:J. Nucl. Mater., 1972, vol. 42, pp. 180–90.

    Article  CAS  Google Scholar 

  43. B. Burton, A.T. Donaldson, and G.L. Reynolds:Zirconium in the Nuclear Industry, ASTM STP 681, ASTM, Philadelphia, PA, 1979, pp. 561–85.

    Google Scholar 

  44. G.E. Lucas and R.M.N. Pelloux:Nucl. Technol., 1981, vol. 53, pp. 46–57.

    CAS  Google Scholar 

  45. G.E. Lucas and R.M.N. Pelloux:Metall. Trans. A, 1981, vol. 12A, pp. 1321–31.

    Google Scholar 

  46. G.E. Lucas, M. Surprenant, J. DiMarzo, and G.J. Brown:J. Nucl. Mater., 1981, vol. 101, pp. 78–91.

    Article  CAS  Google Scholar 

  47. P.J. Pankaskie: “Creep Properties of Zircaloy-2 for Design Application,” HW-SA-2803, Hanford Atomic Products Operation, Richland, WA, 1962.

    Google Scholar 

  48. L.G. Bell:Can. Metall. Q., 1963, vol. 2, pp. 119–42.

    CAS  Google Scholar 

  49. F. Tinti:Nucl. Technol., 1983, vol. 60, pp. 104–13.

    CAS  Google Scholar 

  50. E.R. Gilbert and B. Mastel:ANS Trans., 1969, vol. 12, pp. 132–33.

    Google Scholar 

  51. Y. Matsuo:J. Nucl. Sci. Technol., 1987, vol. 24 (2), pp. 111–19.

    Article  CAS  Google Scholar 

  52. F. Povolo and A.J. Marzocca:J. Nucl. Mater., 1981, vol. 97, pp. 323–32.

    Article  CAS  Google Scholar 

  53. A.T. Donaldson and R.C. Ecob:Scripta Metall., 1985, vol. 19, pp. 1313–18.

    Article  CAS  Google Scholar 

  54. C.C. Busby and K.B. Marsh: “High Temperature Time-Dependent Deformation in Internally Pressurized Zircaloy-4 Tubing (LBWR Development Program),” Bettis Atomic Power Laboratory Report No. WAPD-TM-1043, Westinghouse Electric Corporation, Pittsburgh, PA 1974.

    Google Scholar 

  55. C.C. Busby and L.S. White: “Some High Temperature Mechanical Properties of Internally Pressurized Zircaloy-4 Tubing,” Bettis Atomic Power Laboratory Report No. WAPD-TM-1243, Westinghouse Electric Corporation, Pittsburgh, PA 1976.

    Google Scholar 

  56. A.M. Garde, H.M. Chung, and T.F. Kassner:Acta Metall., 1978, vol. 26, pp. 153–66.

    Article  CAS  Google Scholar 

  57. A.M. Garde:J. Nucl. Mater, 1979, vol. 80, pp. 195–206.

    Article  CAS  Google Scholar 

  58. H.M. Chung, A.M. Garde, and T.F. Kassner: “Mechanical Properties of Zircaloy Containing Oxygen,” Argonne National Laboratory Report No. ANL-76-121, Argonne National Laboratory, Argonne, IL, 1978.

    Google Scholar 

  59. G. Brun, J. Pelchat, J.C. Floze, and M. Galimberti:Zirconium in the Nuclear Industry, ASTM STP 939, ASTM, Philadelphia, PA, 1987, pp. 597–616.

    Google Scholar 

  60. M. Mayuzumi and T. Onchi:J. Nucl. Mater., 1990, vol. 175, pp. 135–42.

    Article  CAS  Google Scholar 

  61. M. Mayuzumi and T. Onchi:J. Nucl. Mater., 1990, vol. 171, pp. 381–88.

    Article  CAS  Google Scholar 

  62. K.L. Murty:JOM, 1999, vol. 51, pp. 32–39.

    CAS  Google Scholar 

  63. K.L. Murty, B.V. Tanikella, and J.C. Earthman:Acta Metall. Mater, 1994, vol. 42, pp. 3653–61.

    Article  CAS  Google Scholar 

  64. K.L. Murty:Trans. Ind. Inst. Met., 2000, vol. 53, pp. 107–20.

    CAS  Google Scholar 

  65. Y.-S. Kim:J. Nucl. Mater., 1997, vol. 250, pp. 164–70.

    Article  CAS  Google Scholar 

  66. J.H. Choe and J.H. Hong:J. Kor. Inst. Met., 1984, vol. 22, pp. 613–20.

    CAS  Google Scholar 

  67. Y.-K. Park, T.-S. Kim, J.-H. Choi, and M.-Y. Wee:J. Kor. Inst. Met. Mater., 2000, vol. 38, pp. 624–28.

    CAS  Google Scholar 

  68. H.E. Rosinger, P.C. Bera, and W.R. Clendening: “The Steady State Creep of Zircaloy-4 Fuel Cladding from 940 to 1873 K,” AECL-6193, Atomic Energy of Canada Limited, Whiteshell Nuclear Research Establishment, Pinawa, Manitoba, Canada, 1978.

    Google Scholar 

  69. G. Porsch, J. Fleisch, and B. Heits:Nucl. Technol., 1986, vol. 74, pp. 287–98.

    Google Scholar 

  70. M. Peehs and J. Fleisch:J. Nucl. Mater., 1986, vol. 137, pp. 190–202.

    Article  Google Scholar 

  71. R.E. Einziger, H. Tsai, M.C. Billone, and B.A. Hilton: “Examination of Spent Fuel Rods after 15 Years in Dry Storage,” Report No. NUREG/CR-6831, ANL-03/17, Argonne National Laboratory, Argonne, IL, 2003.

    Google Scholar 

  72. R.E. Einziger, S.D. Atkin, D.E. Stellrecht, and V. Pasupathi:Nucl. Technol., 1982, vol. 57, pp. 65–80.

    CAS  Google Scholar 

  73. R.E. Einziger and R. Kohli:Nucl. Technol., 1984, vol. 67, pp. 107–23.

    CAS  Google Scholar 

  74. W. Goll, H. Spilker, and E. Toscano:J. Nucl. Mater., 2001, vol. 289, pp. 247–53.

    Article  CAS  Google Scholar 

  75. C. Pescatore and M.G. Cowgill: “Temperature Limit Determination for the Inert Dry Storage of Spent Nuclear Fuel—Final Report,” EPRI TR-103949, Brookhaven National Laboratory, Upton, NY, 1994.

    Google Scholar 

  76. P.J. Henningson, J.T. Willse, B. Cox, M.G. Bale, K.L. Murty, and W.A. Pavinich: “Cladding Integrity under Long Term Disposal,” Framatome Technologies Report No. 51-1267509-00, 1998.

  77. R.L. Keusseyan, C.P. Hu, and C.Y. Li:J. Nucl. Mater., 1979, vol. 80, pp. 390–92.

    Article  CAS  Google Scholar 

  78. T.A. Hayes, R.S. Rosen, and M.E. Kassner:J. Nucl. Mater., in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayes, T.A., Kassner, M.E. Creep of zirconium and zirconium alloys. Metall Mater Trans A 37, 2389–2396 (2006). https://doi.org/10.1007/BF02586213

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02586213

Keywords

Navigation